Integration by Parts

MAT 126, Week 2, Thursday class

Xuntao Hu

Integration by Parts

Recall that the substitution rule is a combination of the FTC and the chain rule. We can also combine the FTC and the product rule:

$$
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)
$$

Integration by Parts

Integrate the both sides of the product rule $\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$,, by the FTC, we have

$$
f(x) g(x)=\int \frac{d}{d x}[f(x) g(x)] d x=\int f(x) g^{\prime}(x) d x+\int f^{\prime}(x) g(x) d x
$$

We can rearrange the terms and get

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x,
$$

This is indeed the Integration by Parts formula.

Integration by Parts

We can write a perhaps more familiar form of the integration by parts formula by substituting $u=f(x)$ and $v=g(x)$, then

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x
$$

gives

$$
\int u v^{\prime} d x=u v-\int v u^{\prime} d x .
$$

Remember that u, v are functions of x. Note that $d u=u^{\prime}(x) d x$, and $d v=v^{\prime}(x) d x$, so we finally have

$$
\int u d v=u v-\int v d u
$$

Integration by Parts

To apply the integration by parts formula:

$$
\int u d v=u v-\int v d u
$$

The most important thing is to determine from the given integral which part should be your u, and which part should be your $d v$.

Let us see how to do this from the first example:
(5.6 E1) Find $\int x \sin x d x$

Integration by Parts

(5.6 E1) Find $\int x \sin x d x$

Solution:

- Step 1: In order to apply the integration by parts formula $\int u d v=u v-\int v d u$, we let $u=x$, and let $d v=\sin x d x$.
- Step 2: We need to find out $d u=d x, v=\int \sin x d x=-\cos x$
- Step 3: Plug in the formula $\int u d v=u v-\int v d u$, we get

$$
\int x \sin x d x=(x)(-\cos x)-\int(-\cos x) d x
$$

- Step 4: Since $\int \cos x d x=\sin x$, we have the final answer as

$$
-x \cos x+\sin x+C
$$

Summary of the Steps

In order to apply the integration by parts formula $\int u d v=u v-\int v d u$, we need to know four data:

$$
u, \quad d v, \quad d u, \quad v
$$

- Step 1: Choose the suitable u and $d v$ from the expression. Remember that $d v$ should be of the form $v^{\prime}(x) d x$.
- Step 2: From u and $d v$, we can find out

$$
d u=u^{\prime}(x) d x \quad \text { and } \quad v=\int d v=\int v^{\prime}(x) d x
$$

- Step 3: Plug in the formula $\int u d v=u v-\int v d u$. The problem is now transformed into finding $\int v d u$, which must be simpler than the original $\int u d v$.
- Step 4: Integrate $\int v d u$. And get the final answer.

How to choose the correct u and $d v$?

One general principle:
Since we need to differentiate u to get $d u$, and we need to integrate $d v$ to get v,
we are choosing the u that is easy to differentiate and the $d v$ that is easy to integrate!

For example: (5.6 E2) Evaluate $\int \ln x d x$

Integration by Parts

(5.6 E2) Evaluate $\int \ln x d x$

We have two choices:

- Choose $u(x)=1$, and $d v=\ln x d x$;
- Or we choose $u(x)=\ln x$, and $d v=d x$.

Integration by Parts

(5.6 E2) Evaluate $\int \ln x d x$

If we go with the first choice: $u(x)=1$, and $d v=\ln x d x$, then in order to find $d u$ and v, we need to calculate:

$$
d u=u^{\prime}(x) d x=0 \quad d v=\int \ln x d x
$$

This doesn't change the problem at all!

Integration by Parts

(5.6 E2) Evaluate $\int \ln x d x$

Solution:

- Step 1: Choose $u(x)=\ln x$, and $d v=d x$.
- Step 2: Find $d u$ and v :

$$
d u=u^{\prime}(x) d x=\frac{1}{x} d x ; \quad v=\int d v=\int d x=x
$$

- Step 3: Plug in $\int u d v=u v-\int v d u$, and get

$$
\int \ln x d x=\ln x \cdot x-\int x \cdot \frac{1}{x} d x=x \ln x-\int d x
$$

- Step 4: Since $\int d x=x$, we have

$$
\int \ln x d x=x \ln x-x+C
$$

Suggested choices on u and $d v$

Functions that are easy to differentiate (Usually will be set as u):

- $x ; x^{2} ; \ldots$ (So that by taking derivatives the power drops)
- $\ln x$
- $\arctan x ; \arcsin x$

Functions that are easy to integrate (Usually will be set as $d v$):

- $\sin x d x ; \cos x d x$
- $e^{x} d x$
- $d x$

Integration by Parts

$(5.6,3)$ Find $\int x \cos (5 x) d x$

Integration by Parts

$(5.6,3)$ Find $\int x \cos (5 x) d x$
Solution:

- Step 1: We can typically choose $u=x$, and $d v=\cos (5 x) d x$
- Step 2: We have $d u=d x$. To find

$$
v=\int d v=\int \cos (5 x) d x
$$

We will need to use substitution:

- Step 2': substitute $w=5 x$, then $d w=5 d x$. Then

$$
v=\int \cos 5 x d x=\int \cos w \frac{d w}{5}=\frac{1}{5} \sin w=\frac{1}{5} \sin (5 x)
$$

Integration by Parts

$(5.6,3)$ Find $\int x \cos (5 x) d x$

Solution:

- Step 3: Plug in $\int u d v=u v-\int v d u$, and get

$$
\int x \cos (5 x) d x=\frac{1}{5} \sin (5 x) \cdot x-\frac{1}{5} \int \sin (5 x) d x
$$

- Step 4: We only need to integrate $\int \sin (5 x) d x$, which we need to apply substitution ($w=5 x$), we will get $\int \sin (5 x) d x=-\frac{1}{5} \cos x$.
- Step 5: The final answer is

$$
\int x \cos (5 x) d x=\frac{1}{5} x \sin (5 x)-\frac{1}{5} \cdot\left(-\frac{1}{5} \cos x\right)=\frac{1}{5} x \sin (5 x)+\frac{1}{25} \cos x+C
$$

Integration by Parts

$(5.6,5)$ Find $\int r e^{r / 2} d r$

Integration by Parts

$(5.6,5)$ Find $\int r e^{r / 2} d r$

Solution:

- Step 1: We can typically choose $u=r$, and $d v=e^{r / 2} d r$
- Step 2: We have $d u=d r$. To find

$$
v=\int d v=\int e^{r / 2} d r
$$

We will need to use substitution:

- Step 2': substitute $w=r / 2$, then $d w=\frac{1}{2} d r$. Then

$$
v=\int e^{w} 2 d w=2 e^{w}=2 e^{r / 2}
$$

Integration by Parts

$(5.6,5)$ Find $\int r e^{r / 2} d r$
Solution:

- Step 3: Plug in $\int u d v=u v-\int v d u$, and get

$$
\int r e^{r / 2} d r=r \cdot\left(2 e^{r / 2}\right)-\int 2 e^{r / 2} d r
$$

- Step 4: We only need to integrate $\int e^{r / 2} d r$, which we need to apply substitution ($w=r / 2$), we will get $\int 2 e^{r / 2} d r=2 e^{r / 2}$.
- Step 5: The final answer is

$$
\int r e^{r / 2} d r=2 r \cdot e^{r / 2}-2 \int e^{r / 2} d r=2 r \cdot e^{r / 2}-4 e^{r / 2}+C
$$

Integration by Parts

$(5.6,12)$ Find $\int \arcsin t d t$.

Integration by Parts

$(5.6,12)$ Find $\int \arcsin t d t$.
Solution:

- Step 1: Choose $u(t)=\arcsin t d t$, and $d v=d t$.
- Step 2: Find $d u$ and v :

$$
d u=u^{\prime}(t) d t=\frac{1}{\sqrt{1-t^{2}}} d t ; \quad v=\int d v=\int d t=t
$$

- Step 3: Plug in $\int u d v=u v-\int v d u$, and get

$$
\int \arcsin t d t=t \arcsin t-\int \frac{t}{\sqrt{1-t^{2}}} d t
$$

- Step 4: We now need to find $\int \frac{t}{\sqrt{1-t^{2}}} d t$. This is already solvable! (By substitution.)

Integration by Parts + Substitution

$(5.6,11)$ Find $\int \arcsin t d t$

Solution:

- Step 5: to find $\int \frac{t}{\sqrt{1-t^{2}}} d t$, let us substitute $w=1-t^{2}$.
- Step 6: From $w=1-t^{2}$ we get $d w=-2 t d t$, so $t d t=-\frac{d w}{2}$
- Step 7: The integration becomes $\int \frac{t}{\sqrt{1-t^{2}}} d t=-\int \frac{1}{\sqrt{w}} \frac{d w}{2}$.
- Step 8: Integrate $-\int \frac{1}{\sqrt{w}} \frac{d w}{2}$ and get $-\frac{1}{2} \cdot 2 w^{1 / 2}=-\left(1-t^{2}\right)^{1 / 2}$.
- Step 9: So the final answer is

$$
\int \arcsin t d t=t \arcsin t+\sqrt{1-t^{2}}+C .
$$

Integration by Parts

Another Example:
$(5.6,11)$ Find $\int \arctan t d t$

Integration by Parts + Substitution

$(5.6,11)$ Find $\int \arctan t d t$
Solution:

- Step 1: Choose $u(t)=\arctan t d t$, and $d v=d t$.
- Step 2: Find $d u$ and v :

$$
d u=u^{\prime}(t) d t=\frac{1}{1+t^{2}} d t ; \quad v=\int d v=\int d t=t
$$

- Step 3: Plug in $\int u d v=u v-\int v d u$, and get

$$
\int \arctan t d t=\arctan t \cdot t-\int t \cdot \frac{1}{1+t^{2}} d t=t \arctan t-\int \frac{t}{1+t^{2}} d t
$$

- Step 4: We now need to find $\int \frac{t}{1+t^{2}} d t$. This is solvable by substitution.

Integration by Parts + Substitution

$(5.6,11)$ Find $\int \arctan t d t$
Solution:

- Step 5: to find $\int \frac{t}{1+t^{2}} d t$, let us substitute $w=1+t^{2}$.
- Step 6: From $w=1+t^{2}$ we get $d w=2 t d t$, so $t d t=\frac{d w}{2}$
- Step 7: The integration becomes $\int \frac{t}{1+t^{2}} d t=\int \frac{1}{w} \frac{d w}{2}$.
- Step 8: Integrate $\int \frac{1}{w} \frac{d w}{2}$ and get $\frac{1}{2} \ln |w|=\frac{1}{2} \ln \left|1+t^{2}\right|$.
- Step 9: So the final answer is

$$
\int \arctan t d t=t \arctan t-\frac{1}{2} \ln \left|1+t^{2}\right|+C
$$

Integration by Parts

Let us now do definite integral.
(5.6, E5) Calculate $\int_{0}^{1} \arctan t d t$

Integration by Parts

(5.6, E5) Calculate $\int_{0}^{1} \arctan t d t$

Solution:

- Step 1: From the last problem, we know that the antiderivative of $\arctan t$ is

$$
t \arctan t-\frac{1}{2} \ln \left|1+t^{2}\right|+C
$$

- Step 2: Use the evaluation theorem, we get

$$
\begin{aligned}
\int_{0}^{1} \arctan t d t & =\left.t \arctan t\right|_{0} ^{1}-\frac{1}{2} \ln \left|1+t^{2}\right|_{0}^{1} \\
& =(1 \arctan 1-0 \arctan 0)-\left(\frac{1}{2} \ln \left|1+1^{2}\right|-\frac{1}{2} \ln \left|1+0^{2}\right|\right) \\
& =\frac{\pi}{4}-\frac{1}{2} \ln 2
\end{aligned}
$$

Integration by Parts

From the previous examples we can see that the essential idea of the integration by parts formula

$$
\int u d v=u v-\int v d u
$$

is to change the integral $\int u d v$ into another integral $\int v d u$. The latter will be "easier" than the former to solve!

Note that "easier" usually means that we have done the same or similar problem before!

Integration by Parts

$(5.6,23)$ Find $\int_{1}^{2}(\ln x)^{2} d x$.

Integration by Parts

$(5.6,23)$ Find $\int_{1}^{2}(\ln x)^{2} d x$.
Solution:

- Step 1: We use $u=(\ln x)^{2}$, and $d v=d x$
- Step 2: Find $d u$ and v :

$$
d u=2 \ln x \cdot \frac{1}{x} d x \quad v=\int d x=x
$$

- Step 3: Plug in $\int u d v=u v-\int v d u$, and find

$$
\begin{aligned}
\int_{1}^{2}(\ln x)^{2} d x & =x(\ln x)^{2}-\int x \cdot 2 \ln x \cdot \frac{1}{x} d x \\
& =x(\ln x)^{2}-2 \cdot \int \ln x d x
\end{aligned}
$$

Our mission now is to integrate $\int \ln x d x$.

Integration by Parts (Twice!)

$(5.6,23)$ Find $\int_{1}^{2}(\ln x)^{2} d x$.

Solution:

- Step 4: We have done $\int \ln x d x$ in a previous example, it was done by integration by parts. (That means to solve this problem, we need to use integration by parts twice!)
- Step 5: We recall the solution: let $u=\ln x$ and $d v=d x$, so that $d u=\frac{1}{x} d x$ and $v=x$.
- Step 6: By integration by parts, we have $\int \ln x d x=x \ln x-\int \frac{x}{x} d x=x \ln x-x$.

Integration by Parts (Twice!)

$(5.6,23)$ Find $\int_{1}^{2}(\ln x)^{2} d x$.

Solution:

- Step 7: Therefore the antiderivative to the original integrant is

$$
\begin{aligned}
\int(\ln x)^{2} d x & =x(\ln x)^{2}-2 \cdot \int \ln x d x \\
& =x(\ln x)^{2}-2 x \ln x+2 x+C \\
& =x\left((\ln x)^{2}-2 \ln x+2\right)+C
\end{aligned}
$$

- Step 8: The final answer:

$$
\begin{aligned}
\int_{1}^{2}(\ln x)^{2} d x & =\left.x\left((\ln x)^{2}-2 \ln x+2\right)\right|_{1} ^{2} \\
& =2\left((\ln 2)^{2}-2 \ln 2+2\right)-1\left((0)^{2}-2 \cdot 0+2\right) \\
& =2(\ln 2)^{2}-4 \ln 2+2
\end{aligned}
$$

Integration by Parts

(5.6 E3) Find $\int t^{2} e^{t} d t$

Integration by Parts (Twice!)

(5.6 E3) Find $\int t^{2} e^{t} d t$

Solution:

- Step 1: Use $u=t^{2}, d v=e^{t} d t$.
- Step 2: To find u and $d v$, we have

$$
d u=2 t d t, \quad v=e^{t}
$$

- Step 3: Plug in $\int u d v=u v-\int v d u$, we have

$$
\int t^{2} e^{t} d t=t^{2} e^{t}-\int e^{t} \cdot 2 t d t=t^{2} e^{t}-2 \int t e^{t} d t
$$

Now the new integral $\int t e^{t} d t$ needs another integration by parts!

Integration by Parts (Twice!)

(5.6 E3) Find $\int t^{2} e^{t} d t$

Solution:

- Step 4: To find $\int t e^{t} d t$, we let $u=t, d v=e^{t} d t$.
- Step 5: We have $d u=d t$, and $v=e^{t}$,
- Step 6: Plug in $\int u d v=u v-\int v d u$, we have

$$
\int t e^{t} d t=t e^{t}-\int e^{t} d t
$$

Now we know the integral $\int e^{t} d t=e^{t}$.

- Step 7: The final answer:

$$
\int t^{2} e^{t} d t=t^{2} e^{t}-2 \int t e^{t} d t=t^{2} e^{t}-2\left(t e^{t}-e^{t}\right)+C
$$

Integration by Parts

In the previous solution for $\int t^{2} e^{t} d t$, can we use $u=e^{t}$ and $d v=t^{2} d t$ instead?

Integration by Parts

The answer is NO! Let us see what will happen if we choose $u=e^{t}$ and $d v=t^{2} d t$.

In this case, $d u=e^{t} d t$ is all fine, but $v=\frac{1}{3} t^{3}$, the power of t is raised by 1 !

The integration by parts gives

$$
\int t^{2} e^{t} d t=\frac{1}{3} t^{3} e^{t}-\frac{1}{3} \int t^{3} e^{t} d t
$$

This is even more complicated!!

Integration by Parts

Through this example ($\int t^{2} e^{t} d t$) we can see that, we need to use u to drop the power of t.
Namely, if there is a positive power of t in the integrant $\left(t, t^{2}, t^{3} \ldots\right)$, usually we will set $u=t$ (or $u=t^{2}, u=t^{3} \ldots$) such that the differentiation $d u=d t$ (or $d u=2 t d t, \ldots$) will drop the power of t in the new integral $\int v d u$.
Remember that these are NOT strict rules!
Sometimes there is no good choice: Find $\int t \ln t d t$.

Integration by Parts

Find $\int t \ln t d t$.

- Step 1: Let $u=\ln t, d v=t d t$. (Why don't we use $u=t$ and $d v=\ln t d t ?)$
- Step 2: $d u=\frac{1}{t} d t, v=\frac{1}{2} t^{2}$.
- Step 3: Integration by parts yields:

$$
\int t \ln t d t=\frac{1}{2} t^{2} \ln t-\int \frac{1}{2} t^{2} \frac{1}{t} d t=\frac{1}{2} t^{2} \ln t-\frac{1}{2} \int t d t
$$

- Step 4: We have $\int t d t=\frac{1}{2} t^{2}$. So the final answer is

$$
\int t \ln t d t=\frac{1}{2} t^{2} \ln t-\frac{1}{2} \cdot \frac{1}{2} t^{2}=\frac{1}{2} t^{2} \ln t-\frac{1}{4} t^{2}+C
$$

Integration by Parts

First make a substitution, then use integration by parts
$(5.6,29)$ Find $\int x \ln (1+x) d x$

Integration by Parts

$(5.6,29)$ Find $\int x \ln (1+x) d x$

Solution:

- Step 1: Since $(1+x)$ is inside the $\ln (1+x)$, we consider a substitution $t=1+x$.
- Step 2: By $t=1+x$, we have $x=t-1$, and $d t=d x$.
- Step 3: The original integral is transformed into

$$
\int x \ln (1+x) d x=\int(t-1) \ln t d t=\int t \ln t d t-\int \ln t d t .
$$

We have dealt with both $\int \ln t d t$ and $\int t \ln t d t$ before!

Integration by Parts

$(5.6,29)$ Find $\int x \ln (1+x) d x$

Solution:

- Step 4: Recall that by letting $u=\ln t$ and $d v=d t$, we have $\int \ln t d t=t \ln t-t$.
- Step 5: Recall from the last example, by letting $u=\ln t$ and $d v=t d t$, we have $\int t \ln t d t=\frac{1}{2} t^{2} \ln t-\frac{1}{4} t^{2}$.
- Step 6: So the answer is

$$
\begin{aligned}
\int(1-t) \ln t d t & =-\int \ln t d t \int t \ln t d t \\
& =-t \ln t+t+\frac{1}{2} t^{2} \ln t-\frac{1}{4} t^{2}+C \\
& =t-\frac{1}{4} t^{2}-\ln t+\frac{1}{2} t^{2} \ln t+C
\end{aligned}
$$

Integration by Parts

$(5.6,29)$ Find $\int x \ln (1+x) d x$

Solution:

- Step 7: Plug the $t=1+x$ back, we have

$$
\begin{aligned}
\int x \ln (1+x) d x= & (1+x)-\frac{1}{4}(1+x)^{2} \\
& -\ln (1+x)+\frac{1}{2}(1+x)^{2} \ln (1+x)+C
\end{aligned}
$$

Integration by Parts

First make a substitution, then use integration by parts (5.6 25) Find $\int \cos \sqrt{x} d x$

Integration by Parts

(5.6 25) Find $\int \cos \sqrt{x} d x$

Solution:

- Step 1: Let us first substitute $t=\sqrt{x}$. This is $x=t^{2}$.
- Step 2: By $x=t^{2}$ we have $d x=2 t d t$.
- Step 3: The original integral becomes $\int \cos t \cdot 2 t d t=2 \int t \cos t d t$. We now need to find $\int t \cos t d t$. This seems solvable because we have seen this before!

Integration by Parts

(5.6 25) Find $\int \cos \sqrt{x} d x$

Solution:

- Step 4: To find $\int t \cos t d t$ we need to use integration by parts. Let $u=t, d v=\cos t d t$.
- Step 5: We have $d u=d t, v=\int \cos t d t=\sin t$.
- Step 6: Use integration by parts formula $\int u d v=u v-\int v d u$, we have transformed the integral into

$$
\int t \cos t d t=t \sin t-\int \sin t d t
$$

Integration by Parts

(5.6 25) Find $\int \cos \sqrt{x} d x$

Solution:

- Step 7: We know that $\int \sin t d t=-\cos t$.

$$
\int \cos \sqrt{x} d x=2 \int t \cos t d t=t \sin t+\cos t+C
$$

- Step 8: Substitute the $t=\sqrt{x}$ back:

$$
\int \cos \sqrt{x} d x=\sqrt{x} \sin \sqrt{x}+\cos \sqrt{x}+C
$$

Discussion

Discussion Problems

Use integration by parts to find the following integrals

- $(5.6,2) \int \theta \cos \theta d \theta$
- $(5.6,15) \int_{0}^{\pi} t \sin (3 t) d t$
- $(5.6,17) \int_{1}^{2} \frac{\ln x}{x^{2}} d x$
- $(5.6,7) \int x^{2} \sin x d x$

