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Integration by Parts

Recall that the substitution rule is a combination of the FTC and the

chain rule. We can also combine the FTC and the product rule:

d

dx
[f (x)g(x)] = f (x)g ′(x) + f ′(x)g(x).
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Integration by Parts

Integrate the both sides of the product rule
d
dx [f (x)g(x)] = f (x)g ′(x) + f ′(x)g(x),, by the FTC, we have

f (x)g(x) =

∫
d

dx
[f (x)g(x)]dx =

∫
f (x)g ′(x)dx +

∫
f ′(x)g(x)dx ,

We can rearrange the terms and get∫
f (x)g ′(x)dx = f (x)g(x)−

∫
g(x)f ′(x)dx ,

This is indeed the Integration by Parts formula.
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Integration by Parts

We can write a perhaps more familiar form of the integration by parts

formula by substituting u = f (x) and v = g(x), then∫
f (x)g ′(x)dx = f (x)g(x)−

∫
g(x)f ′(x)dx

gives ∫
uv ′dx = uv −

∫
vu′dx .

Remember that u, v are functions of x . Note that du = u′(x)dx , and

dv = v ′(x)dx , so we finally have∫
udv = uv −

∫
vdu
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Integration by Parts

To apply the integration by parts formula:∫
udv = uv −

∫
vdu

The most important thing is to determine from the given integral which

part should be your u, and which part should be your dv .

Let us see how to do this from the first example:

(5.6 E1) Find
∫
x sin xdx
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Integration by Parts

(5.6 E1) Find
∫
x sin xdx

Solution:

• Step 1: In order to apply the integration by parts formula∫
udv = uv −

∫
vdu, we let u = x , and let dv = sin xdx .

• Step 2: We need to find out du = dx , v =
∫

sin xdx = − cos x

• Step 3: Plug in the formula
∫
udv = uv −

∫
vdu, we get∫

x sin xdx = (x)(− cos x)−
∫

(− cos x)dx

• Step 4: Since
∫

cos xdx = sin x , we have the final answer as

−x cos x + sin x + C .
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Summary of the Steps

In order to apply the integration by parts formula
∫
udv = uv −

∫
vdu,

we need to know four data:

u, dv , du, v

• Step 1: Choose the suitable u and dv from the expression.

Remember that dv should be of the form v ′(x)dx .

• Step 2: From u and dv , we can find out

du = u′(x)dx and v =

∫
dv =

∫
v ′(x)dx .

• Step 3: Plug in the formula
∫
udv = uv −

∫
vdu. The problem is

now transformed into finding
∫
vdu, which must be simpler than the

original
∫
udv .

• Step 4: Integrate
∫
vdu. And get the final answer.
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How to choose the correct u and dv?

One general principle:

Since we need to differentiate u to get du, and we need to integrate dv

to get v ,

we are choosing the u that is easy to differentiate and the dv that is easy

to integrate!

For example: (5.6 E2) Evaluate
∫

ln xdx
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Integration by Parts

(5.6 E2) Evaluate
∫

ln xdx

We have two choices:

• Choose u(x) = 1, and dv = ln xdx ;

• Or we choose u(x) = ln x , and dv = dx .
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Integration by Parts

(5.6 E2) Evaluate
∫

ln xdx

If we go with the first choice: u(x) = 1, and dv = ln xdx , then in order

to find du and v , we need to calculate:

du = u′(x)dx = 0 dv =

∫
ln xdx

This doesn’t change the problem at all!

9



Integration by Parts

(5.6 E2) Evaluate
∫

ln xdx

Solution:

• Step 1: Choose u(x) = ln x , and dv = dx .

• Step 2: Find du and v :

du = u′(x)dx =
1

x
dx ; v =

∫
dv =

∫
dx = x .

• Step 3: Plug in
∫
udv = uv −

∫
vdu, and get∫

ln xdx = ln x · x −
∫

x · 1

x
dx = x ln x −

∫
dx

• Step 4: Since
∫
dx = x , we have∫

ln xdx = x ln x − x + C
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Suggested choices on u and dv

Functions that are easy to differentiate (Usually will be set as u):

• x ; x2;... (So that by taking derivatives the power drops)

• ln x

• arctan x ; arcsin x

Functions that are easy to integrate (Usually will be set as dv):

• sin xdx ; cos xdx

• exdx

• dx
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Integration by Parts

(5.6, 3) Find
∫
x cos(5x)dx
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Integration by Parts

(5.6, 3) Find
∫
x cos(5x)dx

Solution:

• Step 1: We can typically choose u = x , and dv = cos(5x)dx

• Step 2: We have du = dx . To find

v =

∫
dv =

∫
cos(5x)dx

We will need to use substitution:

• Step 2’: substitute w = 5x , then dw = 5dx . Then

v =

∫
cos 5xdx =

∫
cosw

dw

5
=

1

5
sinw =

1

5
sin(5x)
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Integration by Parts

(5.6, 3) Find
∫
x cos(5x)dx

Solution:

• Step 3: Plug in
∫
udv = uv −

∫
vdu, and get∫

x cos(5x)dx =
1

5
sin(5x) · x − 1

5

∫
sin(5x)dx

• Step 4: We only need to integrate
∫

sin(5x)dx , which we need to

apply substitution (w = 5x), we will get
∫

sin(5x)dx = − 1
5 cos x .

• Step 5: The final answer is∫
x cos(5x)dx =

1

5
x sin(5x)−1

5
·(−1

5
cos x) =

1

5
x sin(5x)+

1

25
cos x+C
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Integration by Parts

(5.6, 5) Find
∫
rer/2dr
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Integration by Parts

(5.6, 5) Find
∫
rer/2dr

Solution:

• Step 1: We can typically choose u = r , and dv = er/2dr

• Step 2: We have du = dr . To find

v =

∫
dv =

∫
er/2dr

We will need to use substitution:

• Step 2’: substitute w = r/2, then dw = 1
2dr . Then

v =

∫
ew2dw = 2ew = 2er/2
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Integration by Parts

(5.6, 5) Find
∫
rer/2dr

Solution:

• Step 3: Plug in
∫
udv = uv −

∫
vdu, and get∫

rer/2dr = r · (2er/2)−
∫

2er/2dr

• Step 4: We only need to integrate
∫
er/2dr , which we need to apply

substitution (w = r/2), we will get
∫

2er/2dr = 2er/2.

• Step 5: The final answer is∫
rer/2dr = 2r · er/2 − 2

∫
er/2dr = 2r · er/2 − 4er/2 + C
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Integration by Parts

(5.6, 12) Find
∫

arcsin tdt.
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Integration by Parts

(5.6, 12) Find
∫

arcsin tdt.

Solution:

• Step 1: Choose u(t) = arcsin tdt, and dv = dt.

• Step 2: Find du and v :

du = u′(t)dt =
1√

1− t2
dt; v =

∫
dv =

∫
dt = t.

• Step 3: Plug in
∫
udv = uv −

∫
vdu, and get∫

arcsin tdt = t arcsin t −
∫

t√
1− t2

dt

• Step 4: We now need to find
∫

t√
1−t2 dt. This is already solvable!

(By substitution.)
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Integration by Parts + Substitution

(5.6, 11) Find
∫

arcsin tdt

Solution:

• Step 5: to find
∫

t√
1−t2 dt, let us substitute w = 1− t2.

• Step 6: From w = 1− t2 we get dw = −2tdt, so tdt = − dw
2

• Step 7: The integration becomes
∫

t√
1−t2 dt = −

∫
1√
w

dw
2 .

• Step 8: Integrate −
∫

1√
w

dw
2 and get − 1

2 · 2w
1/2 = −(1− t2)1/2.

• Step 9: So the final answer is∫
arcsin tdt = t arcsin t +

√
1− t2 + C .
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Integration by Parts

Another Example:

(5.6, 11) Find
∫

arctan tdt
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Integration by Parts + Substitution

(5.6, 11) Find
∫

arctan tdt

Solution:

• Step 1: Choose u(t) = arctan tdt, and dv = dt.

• Step 2: Find du and v :

du = u′(t)dt =
1

1 + t2
dt; v =

∫
dv =

∫
dt = t.

• Step 3: Plug in
∫
udv = uv −

∫
vdu, and get∫

arctan tdt = arctan t · t−
∫

t · 1

1 + t2
dt = t arctan t−

∫
t

1 + t2
dt

• Step 4: We now need to find
∫

t
1+t2 dt. This is solvable by

substitution.
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Integration by Parts + Substitution

(5.6, 11) Find
∫

arctan tdt

Solution:

• Step 5: to find
∫

t
1+t2 dt, let us substitute w = 1 + t2.

• Step 6: From w = 1 + t2 we get dw = 2tdt, so tdt = dw
2

• Step 7: The integration becomes
∫

t
1+t2 dt =

∫
1
w

dw
2 .

• Step 8: Integrate
∫

1
w

dw
2 and get 1

2 ln |w | = 1
2 ln |1 + t2|.

• Step 9: So the final answer is∫
arctan tdt = t arctan t − 1

2
ln |1 + t2|+ C

23



Integration by Parts

Let us now do definite integral.

(5.6, E5) Calculate
∫ 1

0
arctan tdt

24



Integration by Parts

(5.6, E5) Calculate
∫ 1

0
arctan tdt

Solution:

• Step 1: From the last problem, we know that the antiderivative of

arctan t is

t arctan t − 1

2
ln |1 + t2|+ C

• Step 2: Use the evaluation theorem, we get∫ 1

0

arctan tdt = t arctan t|10 −
1

2
ln |1 + t2|10

= (1 arctan 1− 0 arctan 0)− (
1

2
ln |1 + 12| − 1

2
ln |1 + 02|)

=
π

4
− 1

2
ln 2
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Integration by Parts

From the previous examples we can see that the essential idea of the

integration by parts formula∫
udv = uv −

∫
vdu

is to change the integral
∫
udv into another integral

∫
vdu. The latter

will be ”easier” than the former to solve!

Note that ”easier” usually means that we have done the same or

similar problem before!
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Integration by Parts

(5.6, 23) Find
∫ 2

1
(ln x)2dx .
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Integration by Parts

(5.6, 23) Find
∫ 2

1
(ln x)2dx .

Solution:

• Step 1: We use u = (ln x)2, and dv = dx

• Step 2: Find du and v :

du = 2 ln x · 1

x
dx v =

∫
dx = x

• Step 3: Plug in
∫
udv = uv −

∫
vdu, and find∫ 2

1

(ln x)2dx = x(ln x)2 −
∫

x · 2 ln x · 1

x
dx

= x(ln x)2 − 2 ·
∫

ln xdx

Our mission now is to integrate
∫

ln xdx .
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Integration by Parts (Twice!)

(5.6, 23) Find
∫ 2

1
(ln x)2dx .

Solution:

• Step 4: We have done
∫

ln xdx in a previous example, it was done by

integration by parts. (That means to solve this problem, we need to

use integration by parts twice!)

• Step 5: We recall the solution: let u = ln x and dv = dx , so that

du = 1
x dx and v = x .

• Step 6: By integration by parts, we have∫
ln xdx = x ln x −

∫
x
x dx = x ln x − x .
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Integration by Parts (Twice!)

(5.6, 23) Find
∫ 2

1
(ln x)2dx .

Solution:

• Step 7: Therefore the antiderivative to the original integrant is∫
(ln x)2dx = x(ln x)2 − 2 ·

∫
ln xdx

= x(ln x)2 − 2x ln x + 2x + C

= x
(
(ln x)2 − 2 ln x + 2

)
+ C

• Step 8: The final answer:∫ 2

1

(ln x)2dx = x
(
(ln x)2 − 2 ln x + 2

)
|21

= 2
(
(ln 2)2 − 2 ln 2 + 2

)
− 1

(
(0)2 − 2 · 0 + 2

)
= 2(ln 2)2 − 4 ln 2 + 2
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Integration by Parts

(5.6 E3) Find
∫
t2etdt
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Integration by Parts (Twice!)

(5.6 E3) Find
∫
t2etdt

Solution:

• Step 1: Use u = t2, dv = etdt.

• Step 2: To find u and dv , we have

du = 2tdt, v = et

• Step 3: Plug in
∫
udv = uv −

∫
vdu, we have∫

t2etdt = t2et −
∫

et · 2tdt = t2et − 2

∫
tetdt.

Now the new integral
∫
tetdt needs another integration by parts!
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Integration by Parts (Twice!)

(5.6 E3) Find
∫
t2etdt

Solution:

• Step 4: To find
∫
tetdt, we let u = t, dv = etdt.

• Step 5: We have du = dt, and v = et ,

• Step 6: Plug in
∫
udv = uv −

∫
vdu, we have∫

tetdt = tet −
∫

etdt

Now we know the integral
∫
etdt = et .

• Step 7: The final answer:∫
t2etdt = t2et − 2

∫
tetdt = t2et − 2(tet − et) + C
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Integration by Parts

In the previous solution for
∫
t2etdt, can we use u = et and dv = t2dt

instead?
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Integration by Parts

The answer is NO! Let us see what will happen if we choose u = et and

dv = t2dt.

In this case, du = etdt is all fine, but v = 1
3 t

3, the power of t is raised by

1!

The integration by parts gives∫
t2etdt =

1

3
t3et − 1

3

∫
t3etdt

This is even more complicated!!
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Integration by Parts

Through this example (
∫
t2etdt) we can see that, we need to use u to

drop the power of t.

Namely, if there is a positive power of t in the integrant (t, t2, t3...),

usually we will set u = t (or u = t2, u = t3 ...) such that the

differentiation du = dt (or du = 2tdt, ...) will drop the power of t in the

new integral
∫
vdu.

Remember that these are NOT strict rules!

Sometimes there is no good choice: Find
∫
t ln tdt.
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Integration by Parts

Find
∫
t ln tdt.

• Step 1: Let u = ln t, dv = tdt. (Why don’t we use u = t and

dv = ln tdt?)

• Step 2: du = 1
t dt, v = 1

2 t
2.

• Step 3: Integration by parts yields:∫
t ln tdt =

1

2
t2 ln t −

∫
1

2
t2

1

t
dt =

1

2
t2 ln t − 1

2

∫
tdt

• Step 4: We have
∫
tdt = 1

2 t
2. So the final answer is∫

t ln tdt =
1

2
t2 ln t − 1

2
· 1

2
t2 =

1

2
t2 ln t − 1

4
t2 + C
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Integration by Parts

First make a substitution, then use integration by parts

(5.6, 29) Find
∫
x ln(1 + x)dx

38



Integration by Parts

(5.6, 29) Find
∫
x ln(1 + x)dx

Solution:

• Step 1: Since (1 + x) is inside the ln(1 + x), we consider a

substitution t = 1 + x .

• Step 2: By t = 1 + x , we have x = t − 1, and dt = dx .

• Step 3: The original integral is transformed into∫
x ln(1 + x)dx =

∫
(t − 1) ln tdt =

∫
t ln tdt −

∫
ln tdt.

We have dealt with both
∫

ln tdt and
∫
t ln tdt before!
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Integration by Parts

(5.6, 29) Find
∫
x ln(1 + x)dx

Solution:

• Step 4: Recall that by letting u = ln t and dv = dt, we have∫
ln tdt = t ln t − t.

• Step 5: Recall from the last example, by letting u = ln t and

dv = tdt, we have
∫
t ln tdt = 1

2 t
2 ln t − 1

4 t
2.

• Step 6: So the answer is∫
(1− t) ln tdt = −

∫
ln tdt

∫
t ln tdt

= −t ln t + t +
1

2
t2 ln t − 1

4
t2 + C

= t − 1

4
t2 − ln t +

1

2
t2 ln t + C
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Integration by Parts

(5.6, 29) Find
∫
x ln(1 + x)dx

Solution:

• Step 7: Plug the t = 1 + x back, we have∫
x ln(1 + x)dx =(1 + x)− 1

4
(1 + x)2

− ln(1 + x) +
1

2
(1 + x)2 ln(1 + x) + C
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Integration by Parts

First make a substitution, then use integration by parts

(5.6 25) Find
∫

cos
√
xdx
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Integration by Parts

(5.6 25) Find
∫

cos
√
xdx

Solution:

• Step 1: Let us first substitute t =
√
x . This is x = t2.

• Step 2: By x = t2 we have dx = 2tdt.

• Step 3: The original integral becomes
∫

cos t · 2tdt = 2
∫
t cos tdt.

We now need to find
∫
t cos tdt. This seems solvable because we

have seen this before!
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Integration by Parts

(5.6 25) Find
∫

cos
√
xdx

Solution:

• Step 4: To find
∫
t cos tdt we need to use integration by parts. Let

u = t, dv = cos tdt.

• Step 5: We have du = dt, v =
∫

cos tdt = sin t.

• Step 6: Use integration by parts formula
∫
udv = uv −

∫
vdu, we

have transformed the integral into∫
t cos tdt = t sin t −

∫
sin tdt
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Integration by Parts

(5.6 25) Find
∫

cos
√
xdx

Solution:

• Step 7: We know that
∫

sin tdt = − cos t.∫
cos
√
xdx = 2

∫
t cos tdt = t sin t + cos t + C

• Step 8: Substitute the t =
√
x back:∫

cos
√
xdx =

√
x sin

√
x + cos

√
x + C
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Discussion



Discussion Problems

Use integration by parts to find the following integrals

• (5.6, 2)
∫
θ cos θdθ

• (5.6, 15)
∫ π
0
t sin(3t)dt

• (5.6, 17)
∫ 2

1
ln x
x2 dx

• (5.6, 7)
∫
x2 sin xdx
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	Discussion

