The Fundamental Theorem of Calculus

MAT 126, Week 2, Monday class

Xuntao Hu

Table of contents

1. Review of the Riemann Sum
2. The Fundamental Theorem of Calculus (FTC)
3. Substitution
4. Discussion

Review of the Riemann Sum

Review of the Riemann Sum

The Riemann Sum for a function f on the interval $[a, b]$:

- (Right) $R_{n}:=\sum_{i=1}^{n} \Delta x \cdot f\left(x_{i}\right)$
- (Left) $L_{n}:=\sum_{i=0}^{n-1} \Delta x \cdot f\left(x_{i}\right)$
where $\Delta x=\frac{b-a}{n}$, and $x_{i}=a+i \cdot \Delta x=a+i \cdot \frac{b-a}{n}$.

Review of the Riemann Sum

Definite Integral \longleftrightarrow Limit of the Riemann Sum

$$
\int_{a}^{b} f(x) d x \longleftrightarrow \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x f\left(x_{i}\right)
$$

- Given the definite integral, we can write down the limit of its Riemann Sum.
- Conversely, given the limit of a Riemann Sum, we can recover the corresponding definite integral.

Limit of a sum \rightarrow Definite Integral

(Chap 5.2,53) Express the limit as a definite integral:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{4}}{n^{5}}
$$

Limit of a sum \rightarrow Definite Integral

Solution:

- Step 0: Note that $\frac{i^{4}}{n^{5}}=\frac{1}{n} \cdot\left(\frac{i}{n}\right)^{4}$, the original limit will be changed into

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{4}
$$

- Step 1: Compare the expression with the Riemann Sum formula $R_{n}=\Delta x \sum_{i=1}^{n} f\left(x_{i}\right)$ and conclude

$$
\Delta x=\frac{1}{n} ; \quad f\left(x_{i}\right)=\left(\frac{i}{n}\right)^{4}
$$

Limit of a sum \rightarrow Definite Integral

- Step 2: From $\Delta x=\frac{1}{n}$ we conclude that $a=0, b=1$.
- Step 3: From $a=0, b=1$ we can deduce $x_{i}=a+i \cdot \frac{b-a}{n}=\frac{i}{n}$.
- Step 4: From $x_{i}=\frac{i}{n}$ we see that

$$
f\left(x_{i}\right)=\left(\frac{i}{n}\right)^{4}=\left(x_{i}\right)^{4}
$$

This implies $f(x)=x^{4}$.

- Step 5: We can now conclude that the definite integral is

$$
\int_{0}^{1} x^{4} d x
$$

Summary of the Steps

- Step 1: Compare the expression with the Riemann Sum formula $R_{n}=\Delta x \sum_{i=1}^{n} f\left(x_{i}\right)$ and get Δx and $f\left(x_{i}\right)$ (Now the $f\left(x_{i}\right)$ is an expression WITHOUT the x_{i}).
- Step 2: From Δx we can get a, b (Usually we take $a=0$, then $b=n \cdot \Delta x)$;
- Step 3: From a, b we can get $x_{i}=a+i \cdot(b-a) / n$ (if we take $a=0$, then $x_{i}=\frac{i b}{n}$);
- Step 4: From the x_{i} we can get the expression of $f\left(x_{i}\right)$ WITH the x_{i}, then we can get $f(x)$
- Step 5: We can now write down $\int_{a}^{b} f(x) d x$.

Limit of a sum \rightarrow Definite Integral

(Chap 5.2,54) Express the limit as a definite integral:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+(i / n)^{2}}
$$

Limit of a sum \rightarrow Definite Integral

- Step 1: Compare the expression

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+(i / n)^{2}}
$$

with the Riemann Sum formula $R_{n}=\Delta x \sum_{i=1}^{n} f\left(x_{i}\right)$ and get

$$
\Delta x=1 / n ; \quad f\left(x_{i}\right)=\frac{1}{1+(i / n)^{2}}
$$

(Now the $f\left(x_{i}\right)$ is an expression WITHOUT the x_{i}).

- Step 2: From $\Delta x=1 / n$ we can get

$$
a=0, b=1
$$

Limit of a sum \rightarrow Definite Integral

- Step 3: From $a=0, b=1$ we can get $x_{i}=0+i \cdot 1 / n=i / n$;
- Step 4: From $x_{i}=i / n$ we can get

$$
f\left(x_{i}\right)=\frac{1}{1+(i / n)^{2}}=\frac{1}{1+x_{i}^{2}}
$$

Therefore we have

$$
f(x)=\frac{1}{1+x^{2}}
$$

- Step 5: Lastly, we have $\int_{a}^{b} f(x) d x=\int_{0}^{1} \frac{1}{1+x^{2}} d x$.

The Fundamental Theorem of Calculus (FTC)

The FTC

The first example:
(5.4 E2) Let $g(x)=\int_{1}^{x} t^{2} d t$, find a formula for $g(x)$ by evaluation theorem and calculate $g^{\prime}(x)$.

The FTC

(5.4 E2) Let $g(x)=\int_{1}^{x} t^{2} d t$, find a formula for $g(x)$ by evaluation theorem and calculate $g^{\prime}(x)$.
Solution:

- The anti-der of t^{2} is $\frac{1}{3} t^{3}$.
- By evaluation theorem: $g(x)=\left.\frac{1}{3} t^{3}\right|_{t=1} ^{t=x}=\frac{1}{3} x^{3}-\frac{1}{3}$.
- Take derivative: $g^{\prime}(x)=x^{2}$.

The FTC

Upshot: $g^{\prime}(x)=x^{2}$ is the same function as the integrant $\left(t^{2}\right)$!

The FTC

General Case:

Theorem (The Fundamental Theorem of Calculus)

The function $g(x)$ defined by

$$
g(x)=\int_{a}^{x} f(t) d t
$$

is an antiderivative of $f(x)$. Namely, $g^{\prime}(x)=f(x)$.
Remark: As long as the lower limit is a constant (a), it doesn't matter what the number is!

The FTC

Let us check this fact with another example:
$(5.4,5)$ find the derivative of the function $g(x)=\int_{0}^{x}\left(1+t^{2}\right) d t$.

The FTC

$(5.4,5)$ find the derivative of the function $g(x)=\int_{0}^{x}\left(1+t^{2}\right) d t$. Solution:

- The anti-der of $1+t^{2}$ is $t+\frac{1}{3} t^{3}$.
- By evaluation theorem: $g(x)=\left.\left(t+\frac{1}{3} t^{3}\right)\right|_{t=0} ^{t=x}=\left(x+\frac{1}{3} x^{3}\right)-0$.
- Take derivative: $g^{\prime}(x)=\left(x+\frac{1}{3} x^{3}\right)^{\prime}=x^{\prime}+\left(\frac{1}{3} x^{3}\right)^{\prime}=1+x^{2}$.

The FTC

Direct application of the FTC:

(5.4, E3) find the derivative of the function $g(x)=\int_{0}^{x} \sqrt{1+t^{2}} d t$.

Solution: By the FTC, we have

$$
g^{\prime}(x)=\sqrt{1+x^{2}} .
$$

The FTC

$(5.4,11)$ find the derivative of the function $g(x)=\int_{x}^{\pi} \sqrt{1+\sec t} d t$.

The FTC

$(5.4,11)$ find the derivative of the function $g(x)=\int_{x}^{\pi} \sqrt{1+\sec t} d t$.

Solution:

Firstly note that $\int_{x}^{\pi} \sqrt{1+\sec t} d t=-\int_{\pi}^{x} \sqrt{1+\sec t} d t$.
Then by the FTC, we have

$$
g^{\prime}(x)=-\sqrt{1+\sec x} .
$$

Differentiation and Integration as Inverse Processes

The two forms of the FTC:
Form 1 (First differentiate, then integrate): $\int_{a}^{b} f(t) d t=F(b)-F(a)$, where F is any antiderivative of f. Namely:

$$
\int_{a}^{x} F^{\prime}(t) d t=F(x)-F(a) .
$$

(This is the Evaluation Theorem)
Form 2 (First integrate, then differetiate): $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$. Namely:

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

The FTC combined with the chain rule

(5.4 E5) Find $\frac{d}{d x} \int_{1}^{x^{4}} \sec t d t$.

Note that instead of x as the upper limit, we have x^{4} as the upper limit.

The FTC combined with the chain rule

(5.4 E5) Find $\frac{d}{d x} \int_{1}^{x^{4}} \sec t d t$.

Solution: We need to use the Chain Rule:

- Step 1: Let $u=u(x)=x^{4}$ as the inner function; and let $y=y(u)=\int_{1}^{u} \sec t d t$ as the outer function.
- Step 2: The original question is now to find $\frac{d}{d x} y(u(x))$, which is a chain rule problem:

$$
\frac{d y}{d x}=\left.\frac{d y}{d u}\right|_{u=u(x)} \cdot \frac{d u}{d x} .
$$

The FTC combined with the chain rule

Solution: We need to use the Chain Rule:

- Step 3: Now we need to find $\frac{d y}{d u}$ and $\frac{d u}{d x}$:

$$
\begin{aligned}
& \frac{d u}{d x}=4 \cdot x^{3} ; \\
& \frac{d y}{d u}=\sec u .
\end{aligned}
$$

- Step 4: Plug in the chain rule formula and find

$$
\frac{d y}{d x}=\left.\frac{d y}{d u}\right|_{u=u(x)} \cdot \frac{d u}{d x}=\sec \left(x^{4}\right) \cdot 4 \cdot x^{3}=4 x^{3} \sec \left(x^{4}\right) .
$$

The FTC combined with the chain rule

$(5.4,13)$ Find the derivative of $h(x)=\int_{2}^{1 / x} \arctan t d t$.

The FTC combined with the chain rule

Solution:

- Step 1: Let $u=1 / x$ be the inner function; let $y=\int_{2}^{u} \arctan t d t$ as the outer function.
- Step 2: Find the derivatives:

$$
\frac{d u}{d x}=-\frac{1}{x^{2}} \quad \frac{d y}{d u}=\arctan u .
$$

- Step 3: Use the chain rule formula:

$$
\frac{d y}{d x}=\left.\frac{d y}{d u}\right|_{u=u(x)} \cdot \frac{d u}{d x}=\arctan (1 / x) \cdot\left(-\frac{1}{x^{2}}\right)
$$

The FTC combined with the chain rule

(5.4, 17) Find the derivative of $g(x)=\int_{2 x}^{3 x} \frac{t^{2}-1}{t^{2}+1} d t$.

The FTC combined with the chain rule

$(5.4,17)$ Find the derivative of $g(x)=\int_{2 x}^{3 x} \frac{t^{2}-1}{t^{2}+1} d t$.
Solution:

- Step 1: Need to firstly break the integration into two:

$$
\begin{aligned}
\int_{2 x}^{3 x} \frac{t^{2}-1}{t^{2}+1} d t & =\int_{0}^{3 x} \frac{t^{2}-1}{t^{2}+1} d t+\int_{2 x}^{0} \frac{t^{2}-1}{t^{2}+1} d t \\
& =\int_{0}^{3 x} \frac{t^{2}-1}{t^{2}+1} d t-\int_{0}^{2 x} \frac{t^{2}-1}{t^{2}+1} d t \\
& =: g_{1}(x)-g_{2}(x)
\end{aligned}
$$

- Step 2: Apply the FTC + chain Rule to $g_{1}(x)$ and $g_{2}(x)$ separately.

The FTC combined with the chain rule

For $g_{1}(x)$:

- Let $u=3 x$ be the inner function; let $y=\int_{0}^{u} \frac{t^{2}-1}{t^{2}+1} d t$ as the outer function.
- Find the derivatives:

$$
\frac{d u}{d x}=3 \quad \frac{d y}{d u}=\frac{u^{2}-1}{u^{2}+1} .
$$

- Step 4: Use the chain rule formula:

$$
g_{1}^{\prime}(x)=\frac{d y}{d x}=\left.\frac{d y}{d u}\right|_{u=u(x)} \cdot \frac{d u}{d x}=3 \cdot \frac{(3 x)^{2}-1}{(3 x)^{2}+1}
$$

The FTC combined with the chain rule

Similarly for g_{2} we have

$$
g_{2}^{\prime}(x)=2 \cdot \frac{(2 x)^{2}-1}{(2 x)^{2}+1}
$$

Together we have:

$$
g^{\prime}(x)=g_{1}^{\prime}(x)-g_{2}^{\prime}(x)=3 \cdot \frac{(3 x)^{2}-1}{(3 x)^{2}+1}-2 \cdot \frac{(2 x)^{2}-1}{(2 x)^{2}+1}
$$

The FTC combined with the chain rule

(5.4, 22) If $f(x)=\int_{0}^{\sin x} \sqrt{1+t^{2}} d t$ and $g(y)=\int_{3}^{y} f(x) d x$, find $g^{\prime \prime}(\pi / 6)$

The FTC combined with the chain rule

$(5.4,22)$ If $f(x)=\int_{0}^{\sin x} \sqrt{1+t^{2}} d t$ and $g(y)=\int_{3}^{y} f(x) d x$, find $g^{\prime \prime}(\pi / 6)$
Solution:

- Step 1: To find $g^{\prime \prime}(\pi / 6)$ we need first find $g^{\prime \prime}(x)$, then plug in $x=\pi / 6$.
- Step 2: First derivative: $g^{\prime}(x)=f(x)$ (1st time of the FTC)
- Step 3: Second derivative: $g^{\prime \prime}(x)=f^{\prime}(x)=\frac{d}{d x} \int_{0}^{\sin x} \sqrt{1+t^{2}} d t$. This is the 2 nd time of the FTC, we need to use the chain rule in this step.

The FTC combined with the chain rule

- Step 4: To find $\frac{d}{d x} \int_{0}^{\sin x} \sqrt{1+t^{2}} d t$, let $u=\sin x$ be the inner function; let $y=\int_{0}^{u} \sqrt{1+t^{2}} d t$ as the outer function.
- Step 5: Find the derivatives:

$$
\frac{d u}{d x}=\cos x \quad \frac{d y}{d u}=\sqrt{1+u^{2}}
$$

- Step 6: Use the chain rule formula:

$$
g^{\prime \prime}(x)=f^{\prime}(x)=\frac{d y}{d x}=\left.\frac{d y}{d u}\right|_{u=u(x)} \cdot \frac{d u}{d x}=\sqrt{1+(\sin x)^{2}} \cdot \cos x .
$$

- Step 7: Plug in:
$g^{\prime \prime}(\pi / 6)=\sqrt{1+(\sin (\pi / 6))^{2}} \cdot \cos (\pi / 6)=\sqrt{1+\left(\frac{1}{2}\right)^{2}} \cdot \frac{\sqrt{3}}{2}=\frac{\sqrt{15}}{4}$.

Substitution

Substitution

Let us now see another version of the FTC + Chain Rule story:
The Chain Rule states:

$$
\frac{d}{d x} F(g(x))=F^{\prime}(g(x)) g^{\prime}(x)
$$

By the FTC, taking integration on both side we get:

$$
F(g(x))=\int \frac{d}{d x} F(g(x))=\int F^{\prime}(g(x)) g^{\prime}(x) d x
$$

This is called the Substitution Rule.

Substitution

The Substitution Rule: $F(g(x))=\int F^{\prime}(g(x)) g^{\prime}(x) d x$.
The key to the substitution rule is to find the part to be substitute, i.e. $u=g(x)$.

First Example of the Substitution rule:
Find: $\int 2 x \sqrt{1+x^{2}} d x$. (Hint: use $u=1+x^{2}$.)

Substitution

Find: $\int 2 x \sqrt{1+x^{2}} d x$. (Hint: use $u=1+x^{2}$.)

Solution:

- Step 1: Substitute $u=1+x^{2}$ (we choose this not because of the hint, but because of that this function is in the square root!)
- Step 2: Find $d u=u^{\prime}(x) d x=2 x d x$.
- Step 3: The original integration:

$$
\int 2 x \sqrt{1+x^{2}} d x=\int \sqrt{1+x^{2}}(2 x d x)=\int \sqrt{u} d u=\frac{2}{3} u^{3 / 2}
$$

- Step 4: Substitute $u=1+x^{2}$ back:

$$
\int 2 x \sqrt{1+x^{2}} d x=\frac{2}{3}\left(1+x^{2}\right)^{3 / 2}
$$

Discussion

Discussion Problems

Use the Fundamental Theorem of Calculus to find the derivatives of the functions

- $(5.4,7) g(x)=\int_{1}^{x} \frac{1}{t^{3}+1} d t$
- $(5.4,9) g(x)=\int_{2}^{x} t^{2} \sin t d t$
- (5.4 14) $h(x)=\int_{0}^{x^{2}} \sqrt{1+r^{3}} d r$
- (5.4 15) $f(x)=\int_{0}^{\tan x} \sqrt{t+\sqrt{t}} d t$

Evaluate the integral by using the given substitute

- $(5.5,1) \int e^{-x} d x$, (use $\left.u=-x\right)$.

