
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 145, Number 4, April 2017, Pages 1399–1413
http://dx.doi.org/10.1090/proc/13314

Article electronically published on September 30, 2016

THE LOCUS OF PLANE QUARTICS WITH A HYPERFLEX

XUNTAO HU

(Communicated by Lev Borisov)

Abstract. Using the results of a work by Dalla Piazza, Fiorentino and Salvati
Manni, we determine an explicit modular form defining the locus of plane
quartics with a hyperflex among all plane quartics. As a result, we provide a
direct way to compute the divisor class of the locus of plane quartics with a
hyperflex withinM3, first obtained by Cukierman. Moreover, the knowledge of
such an explicit modular form also allows us to describe explicitly the boundary
of the hyperflex locus in M3. As an example we show that the locus of banana
curves (two irreducible components intersecting at two nodes) is contained in
the closure of the hyperflex locus. We also identify an explicit modular form
defining the locus of Clebsch quartics and use it to recompute the class of this
divisor, first obtained in a work by Ottaviani and Sernesi.

0. Introduction

We work over the field of complex numbers. A general line in P2 intersects a
plane quartic C in four points. We call a line bitangent to C if it intersects C at
two double points, denoted by p and q. Thus p + q = 1

2KC is an effective theta
characteristic. The bitangent lines of a smooth plane quartic are in one-to-one
correspondence with the gradients of theta functions with odd characteristics. The
main interest of this paper lies in the case p = q, namely when a line intersects a
plane quartic C in a four-fold point. To fix notation, we call such a line a hyperflex
line, and the intersection a hyperflex point. We call a smooth plane quartic that
admits a hyperflex line a hyperflex quartic.

The locus HF of hyperflex quartics (in Teichmüller dynamics context also known
as Hodd

3 (4) or ΩModd
3 (4)) is a Cartier divisor (see [Ver83] and [Cuk89]) in the

moduli space of smooth genus three curves M3. The class of its closure [HF ] in
the Deligne-Mumford compactification M3 was computed in [Cuk89]:

[HF ] = 308λ− 32δ0 − 76δ1,

where λ is the Hodge class on M3, and δ0, δ1 are the classes of the boundary
divisors.

While the computation by Cukierman in [Cuk89] is algebraic, in this paper we
determine explicitly the modular form defining the locus HF , which gives a direct
analytic approach to the problem.

We recall the notation in [DPFSM14], in which a theta characteristic (ε, δ) ∈
(Z/2Z)3× (Z/2Z)3 is denoted by (i, j), where i = 4ε1 +2ε2 + ε3, j = 4δ1 +2δ2 + δ3.
For instance, ([1, 1, 0], [0, 1, 1]) is denoted by (6, 3).
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Our main result is an explicit formula for a modular form Ω77, whose zero locus
in A3(2) is the closure of the locus of plane quartics for which a fixed bitangent
line is a hyperflex. Here A3(2) denotes the moduli space of principally polarized
abelian varieties of dimension 3 with a (full) level 2 structure.

Theorem 0.1. On A3(2), the modular form Ω77(τ ) defined by:

Ω77(τ ) : =[θ01θ10θ37θ43θ52θ75θ42θ06θ30θ21θ55+θ02θ25θ34θ40θ67θ76θ33θ05θ14θ60θ42]
2

− 4θ01θ02θ10θ25θ34θ37θ40θ43θ52θ67θ75θ76θ00θ04θ57θ70θ61θ73θ20θ07θ00θ16

vanishes at the period matrix τ of a smooth plane quartic iff the bitangent line
corresponding to (i, j) = (7, 7) is a hyperflex. Here θij := θij(τ, 0) is the Riemann
theta constant with characteristics (i, j).

Once we know the modular form, computing the class of its zero locus is straight-
forward, and as a quick corollary we obtain (in Section 3) a direct alternative proof
of Cukierman’s formula for [HF ]. Moreover, by studying the Fourier-Jacobi expan-
sion of the modular form one can explicitly describe the intersection of HF with
any boundary stratum of M3. As an example, we show (in Section 4) that the
locus of “banana” curves (two irreducible components intersecting at two nodes) is
contained in the closure of the hyperflex locus.

The last section is a separate discussion of the locus of Clebsch quartics, the
plane quartics that admit a polar pentagon. We determine an explicit modular
form defining this locus, and apply the same method to confirm its divisor class in
M3.

Besides the application to understanding the boundary of the hyperflex locus
and the locus of Clebsch quartics, the modular forms are important for their own
sake. Before this paper, the only known locus in M3 that could be described
using a modular form was the hyperelliptic locus. The corresponding modular
form is the theta-null modular form — the product of all even theta constants with
characteristics — which can be defined for arbitrary genus. There are other modular
forms in genus higher than three that describe loci of geometric significance, but in
general they are rare. For a partial collection one can see [CS12].

1. Preliminaries

1.1. Theta characteristics on a plane quartic. We denote the Siegel upper
half-space of dimension g by:

Hg := {τ ∈ Mat(g × g,C) | τ = τ t, Im(τ ) > 0}.
The moduli space of principally polarized abelian varieties (ppavs) of dimension g
Ag = Γg \ Hg is the quotient of Hg by the symplectic group Γg := Sp(2g,Z). We
have the Torelli map u : Mg → Ag, sending a curve to its Jacobian. Since our
objects are plane quartics, our discussion will be in the case g = 3. The Torelli map
is dominant in this case, and can be extended to a morphism u : M3 → A3, where
M3 is the Deligne-Mumford compactification, and A3 is the perfect cone toroidal
compactification, which in genus three is the same as the second Voronoi, and the
central cone toroidal compactifications.

For an abelian variety Aτ , we denote the set of its two-torsion points by Aτ [2] �
(Z/2Z)2g, identifying a two-torsion point m = (τε + δ)/2 with a characteristic
(ε, δ) ∈ (Z/2Z)2g.
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THE LOCUS OF PLANE QUARTICS WITH A HYPERFLEX 1401

Definition 1.1. The Riemann theta function with characteristics (ε, δ) is

θ[ εδ ](τ, z) :=
∑
k∈Zg

exp
[
πi
(
(k +

ε

2
)tτ (k +

ε

2
) + 2(k +

ε

2
)t(z +

δ

2
)
)]
.

When (ε, δ) = (0, 0), we have the usual Riemann theta function. For a fixed τ ,
the theta function defines a section of a line bundle on the corresponding abelian
variety Aτ , which gives a principal polarization.

We define e(m) := (−1)ε·δ = ±1 to be the parity of m. The theta function with
characteristics (ε, δ) is an odd/even function of z when (ε, δ) is odd/even. Hence as
a function of τ , the theta constant θ[ εδ ](τ, 0) is identically zero iff (ε, δ) is odd, and
gradz θ[

ε
δ ](τ, z)|z=0 vanishes identically iff (ε, δ) is even.

In genus three, the canonical image of a non-hyperelliptic curve is a plane quartic,
and the bitangent lines to the plane quartic are given by the gradients of the theta
functions with odd characteristics (see [Dol12, ch. 5]).

1.2. Modular forms and the level covers of Ag.

Definition 1.2. Let W be a finite dimensional complex vector space. Given an
arithmetic subgroup Γ ⊂ Γg and a representation ρ : GL(g,C) → GL(W ), a
holomorphic function f : Hg → W is called a ρ-valued Siegel modular form w.r.t. Γ
if

f(γ ◦ τ ) = ρ(Cτ +D) ◦ f(τ )
for any γ = (A B

C D ) ∈ Γ, and any τ ∈ Hg. For g = 1 we also require f to be regular
at the cusps of Γ \H1.

If W = C, and ρ(γ) = det(Cτ +D)k, then the modular form is called a weight k
(scalar) modular form for Γ. We recall [Igu72] the following transformation formula
for theta functions with characteristics:

θ[ εδ ](γτ, (Cτ +D)−1z) = φ · det(Cτ +D)1/2θ[γ ◦ ( ε
δ )](τ, z)

for any γ = (A B
C D ) ∈ Γg acting on the characteristics (ε, δ) in the following way:

(1.1) γ ◦
[
ε
δ

]
=

[
D −C
−B A

] [
ε
δ

]
+

[
diag(CtD)
diag(AtB)

]
.

In our case γ ∈ Γg(4, 8) ⊂ Γg (we will define it below), φ ≡ 1 so we do not define φ
in general. By differentiating with respect to zi we obtain:

∂

∂zi
θ[ εδ ](γτ, (Cτ +D)−1z) = det(Cτ +D)1/2

∑
j

(Cτ +D)ij
∂

∂zj
θ[γ ◦ ( ε

δ )](τ, z)

for any γ ∈ Γg(4, 8).
This is to say that the theta constants with characteristics are modular forms

of weight 1
2 , and the gradients of the theta functions with characteristics evaluated

at z = 0 (see [SM83]) are vector-valued modular forms for the representation ρ =

det
1
2 ⊗std with respect to a level subgroup Γg(4, 8) ⊂ Γg, which is defined in general

as follows:
Γg(k) := {γ ∈ Γg | γ ≡ 12g mod k},

Γg(k, 2k) := {γ ∈ Γg(k) | diag(CtD) ≡ diag(AtB) ≡ 0 mod 2k}.
We will call the quotient Ag(k) := Γg(k) \ Hg, (resp. Ag(k, 2k) := Γg(k, 2k) \ Hg)
the moduli space of ppavs with a level k structure (resp. a level (k, 2k) structure).
This cover of Ag is Galois when k is even.
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1.3. The boundary of the level cover. Recall that PicQ(A3) = QL ⊕ QD,
where L is the first Chern class of the Hodge vector bundle E on A3, and D is the
class of the boundary divisor (see [HS02]). We further recall (see [ACG11]) that
PicQ(M3) = Qλ ⊕ Qδ0 ⊕ Qδ1. Here λ is the pullback of the class L under the
Torelli map, δ0 := ū∗D is the class of the boundary component Δ0, the closure of
the locus of irreducible curves with one node, and δ1 is the class of Δ1, the closure
of the locus of nodal curves of compact type. The Torelli map contracts Δ1 onto
the locus P := A1 ×A2 ⊂ A3.

By definition A3(2) is the moduli of ppavs together with a chosen symplectic
basis for the group of two-torsion points. There is a level toroidal compactification
A3(2) and the level map A3(2) → A3 extends to a map p : A3(2) → A3 of com-
pactifications. The preimage p−1D is reducible, and its irreducible components are
indexed by non-zero characteristics: p−1D =

⋃
n∈(Z/2Z)6−0 Dn. This enumeration

of the components of Δ0 is also discussed in [GH12].
The preimage p−1P is also reducible, and we now identify its irreducible compo-

nents. For a generic point [A] ∈ P we have A = E × A′. The group of two-torsion
points of A splits as A[2] � (Z/2Z)2 ⊕ (Z/2Z)4. Choosing such an isomorphism is
the same as choosing a 2 dimensional symplectic subspace V ⊂ (Z/2Z)6. Hence the
irreducible components of p−1P are labeled by the choice of such subspaces, and
we denote them by PV .

Throughout the paper we will use the following fibre product diagram:

(1.2)

M3(2)
ū′

−−−−→ A3(2)⏐⏐�p′
⏐⏐�p

M3
ū−−−−→ A3

In this diagram M3(2) is the pullback of A3(2) through ū, which parametrizes
stable genus three curves with a chosen symplectic basis for the group of two-
torsion points in their Jacobians. The maps p and p′ are forgetful, while the maps
ū and ū′ are extended Torelli maps. This diagram will be used in the computation
of the class in M3 defined by the pullback of the modular form, which is computed
on A3(2).

2. The hyperflex locus

The hyperflex locus HF is defined to be the subset of M3 consisting of plane
quartics with at least one hyperflex point. It can be shown thatHF is an irreducible
divisor:

Proposition 2.1 ([Ver83, Ch. 1, Prop. 4.9]). HF is an irreducible, 5 dimensional
subvariety of M3, and it is closed in M3 −H3 where H3 is the hyperelliptic locus.

We denote the closure of u(HF) in A3 by HF . We define HFm ⊂ A3(2) to
be the set of ppavs (J(C), i) where the bitangent line corresponding to the odd
characteristic m under the basis defined by i : J(C)[2] � (Z/2Z)6 is a hyperflex
line to C.

To determine the scalar modular form w.r.t. Γ3(2), whose zero locus is equal to
HF77, we need to know the equation of a plane quartic in terms of its bitangents.
Such a formula was known classically for an individual curve (see [Dol12, Ch. 5]).
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THE LOCUS OF PLANE QUARTICS WITH A HYPERFLEX 1403

Only recently Dalla Piazza, Fiorentino and Salvati Manni obtained such an expres-
sion globally over the moduli space of genus three curves [DPFSM14]. They derived
an eight by eight symmetric matrix parametrizing the bitangents of a given plane
quartic, such that the determinant of any four by four minor of the matrix gives
the equation of the quartic. We recall their notation and results.

Definition 2.2. (1) A triple of characteristics m1,m2,m3 is called azygetic
(resp. syzygetic) if

e(m1,m2,m3) = e(m1)e(m2)e(m3)e(m1 +m2 +m3) = −1 (resp. 1).

(2) A (2g + 2)-tuple of characteristics is called a fundamental system if any
subset of three elements is azygetic.

For a more detailed discussion see [Dol12, Chp. 5]. In our case g = 3, any
fundamental system consists of 8 characteristics, within which either 3 or 7 elements
are odd.

We define

bij := gradz θ[
ε
δ ](τ, z)|z=0,

where i = 4ε1 + 2ε2 + ε3, j = 4δ1 + 2δ2 + δ3, and denote the Jacobian determinant
by:

D(n1, n2, n3) := bn1
∧ bn2

∧ bn3
.

It is known that D is a scalar modular form of weight 5
2 that can be written in

terms of theta constants using Jacobi’s derivative formula:

Proposition 2.3 ([Igu81]). Let n1, n2, n3 be an azygetic triple of odd theta charac-
teristics; then there exists a unique quintuple of even theta characteristics m1, m2,
m3, m4, m5 such that the 8-tuple forms a fundamental system. We have

D(n1, n2, n3) = ±π3 · θm1
θm2

θm3
θm4

θm5
.

The following proposition is the result of Dalla Piazza, Fiorentino, Salvati Manni.

Proposition 2.4 ([DPFSM14, Cor. 6.3]). Let τ be the period matrix of the Jacobian
of a plane quartic C; then the equation of the image of C under canonical embedding
is given by the determinant of the following symmetric matrix:

Q(τ, z) :=

⎛
⎜⎜⎜⎝
0 D(31,13,26)

D(77,31,26)b77
D(22,13,35)
D(77,31,26)b64

D(77,64,46)
D(77,31,26)b51

∗ 0 D(22,13,35)
D(77,46,51)b13

D(77,13,31)
D(77,31,26)b26

∗ ∗ 0 D(64,13,22)
D(77,31,26)b35

∗ ∗ ∗ 0

⎞
⎟⎟⎟⎠ .

Note that {bij} are linear expressions in the coordinates of PH0(C,KC)
∨, and

the determinant is a quartic polynomial in the bij , with coefficients being rational
functions in Jacobian determinants. Using this we derive the modular form Ω77:

Theorem 2.5. Let Ω77 be the following modular form with respect to Γ3(2):

(2.1)

Ω77 :=
[
θ01θ10θ37θ43θ52θ75 ·D(77, 64, 13) + θ02θ25θ34θ40θ67θ76 ·D(77, 51, 26)

]2
− 4θ01θ02θ10θ25θ34θ37θ40θ43θ52θ67θ75θ76 ·D(77, 64, 51) ·D(77, 13, 26).

Then its zero locus in A3(2) is equal to HF77.
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1404 XUNTAO HU

Using the Jacobi’s derivative formula given by Proposition 2.3, Ω77 can be rewrit-
ten as a polynomial in theta constants, which (up to the constant factor of π6) is
equal to the modular form in Theorem 0.1. Thus proving Theorem 2.5 will complete
the proof of our main result.

The proof is obtained by directly computing the bitangents, and uses the follow-
ing lemma:

Lemma 2.6. Let l = l1x+ l2y+ l3z be the equation of a line in P2 in homogeneous
coordinates (x : y : z), and suppose m,n, k, s are lines written similarly. Then the
two intersection points of the line l = 0 and the quadric mk − ns = 0 coincide if
and only if the following expression vanishes:

(2.2) Ψl,m,n,k,s =
(∣∣∣ l1 l2 l3

m1 m2 m3

k1 k2 k3

∣∣∣+ ∣∣∣ l1 l2 l3
n1 n2 n3
s1 s2 s3

∣∣∣)2

− 4 ·
∣∣∣ l1 l2 l3
m1 m2 m3
n1 n2 n3

∣∣∣ · ∣∣∣ l1 l2 l3
k1 k2 k3
s1 s2 s3

∣∣∣.
Proof. The proof is a direct computation: we plug in the equation of l into {mk −
ns = 0} and get:[

(m1l2 −m2l1)x+ (m3l2 −m2l3)z
]
·
[
(k1l2 − k2l1)x+ (k3l2 − k2l3)z

]
−
[
(n1l2 − n2l1)x+ (n3l2 − n2l3)z

]
·
[
(s1l2 − s2l1)x+ (s3l2 − s2l3)z

]
= 0.

We dehomogenize at z. The discriminant F of this quadric (in x) is a homogenous
polynomial of degree 8 in the coefficients of l,m, n, k, s. We further observe that F
is divisible by l22. Define Ψ := F/l22. One can verify that Ψ is independent of the
dehomogenization. �

Proof of Theorem 2.5. Using Proposition 2.3, we write the coefficients of Q(τ, z)
given by Proposition 2.4 as rational functions of even theta constants. By clearing
the denominators we have the equation of the plane quartic:
(2.3)
detQ(τ, 0) = (θ75θ52θ43)

4 · (θ204θ73θ60)2 · [(af)2 + (be− cd)2 − 2(af)(be+ cd)] = 0,

where

a = θ66θ41θ50b77, b = θ70θ52θ43b64, c = θ40θ76θ67b51,
d = θ02θ25θ34b13, e = θ37θ01θ10b26, f = θ24θ12θ03b35.

Recall that on A3 the vanishing of the theta-null modular form (the product of
all even theta constants) defines the hyperelliptic locus, which we know is disjoint
from the hyperflex locus by Proposition 2.1. More concretely, the vanishing locus of
any even theta constant is an irreducible component of the hyperelliptic locus. Thus
the vanishing locus defined by the common factor (θ75θ52θ43)

4 · (θ204θ73θ60)2 lies in
the hyperelliptic locus, we hence eliminate this common factor from detQ(τ, 0).
Rewrite the remaining part:

(af)2 + (be− cd)2 − 2(af)(be+ cd) = a · F + (be− cd)2

where F is a homogenous degree 3 polynomial in a, b, c, d, e, f . This is an equation
of the quartic to which {a = 0} is a bitangent line. And the two tangent points are
given by the two intersections of {a = 0} and the double conic {(be− cd)2 = 0}:

{a = 0} ∩ {a · F + (be− cd)2 = 0} = {a = 0} ∩ 2 · {be− cd = 0}.
By the lemma, plugging a, b, c, d, e into (2.2) we have

Ψa,b,c,d,e = θ66θ73θ41θ50θ04 · Ω77
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THE LOCUS OF PLANE QUARTICS WITH A HYPERFLEX 1405

where Ω77 is defined in (2.1). We eliminate the common factor θ66θ73θ41θ50θ04 as its
vanishing locus also lies in the hyperelliptic locus, thus Ω77 is the correct modular
form. �

Using the modular form we can now compute the class of the hyperflex locus
HF in M3:

Corollary 2.7. The class [HF ] ∈ H2(M3,Q) is equal to 308 · λ.

Proof. First we need to compute the weight of the modular form Ω77. The weight
of D(n1, n2, n3) is

5
2 and the weight of each θm is 1

2 . Therefore 12 · 1
2 + 2 · 5

2 = 11
is the weight of the scalar modular form Ω77 with respect to Γ3(2).

Set-theoretically the hyperflex locus HF ⊂ A3 is the image of HF77 ⊂ A3(2)
under the level 2 covering map p. Moreover, for any odd characteristic m we have
p(HFm) = HF . By the computation of weight we have [HF77] = 11 · p∗L ∈
H2(A3(2),Q). We have

(2.4) p∗[HF ] =
∑

m odd

[HFm] = 28 · 11 · p∗L = 308 · p∗L.

The second equality is due to the fact that p is a Galois covering. Hence for all odd
m, the class of HFm is equal to that of HF77. Taking the pushforward of (2.4) by
p, by projection formula we obtain:

[HF ] = 308 · L.
Pulling this back under the Torelli map u, we obtain the result. �

3. Extension of theta constants and theta gradients

to the boundary

In order to use a modular form to compute the class of the closure of its zero locus
in the compactification of M3, we need to know its vanishing order at the boundary.
We will first compute the extension of theta constants and theta gradients to the
boundary.

3.1. Characterization of the orbits of the Γg-action on sets of character-
istics. We recall the following standard definition (see [Dol12] for a more detailed
discussion):

Definition 3.1. A sequence of characteristics m1,m2, . . . ,ms is called essentially
independent if for any choice of 1 ≤ i1 < i2 < . . . < i2k ≤ s with k ≥ 1 we have

mi1 +mi2 + . . .+mi2k �= 0 mod 2.

Recall the notationDn and PV for the irreducible components of p−1D and p−1P
in A3(2). For the purpose of computing the vanishing orders of θm and gradz θm,
we need the following characterization of the orbits of the Γg-action on the sets of
characteristics (recall that the action is defined by (1.1)).

Proposition 3.2 ([Igu72], [SM94]). Two ordered sequences m1,m2, . . . ,mr and
n1, n2, . . . , nr of characteristics are conjugate under the action of Γg if and only
if e(mi) = e(ni), and e(mi,mj ,mk) = e(ni, nj , nk) for any 1 ≤ i ≤ r, 1 ≤ i <
j < k ≤ r, and if furthermore for any I ⊂ {1, 2, . . . , r}, {mi}i∈I is an essen-
tially independent subsequence if and only if {ni}i∈I is an essentially independent
subsequence.
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1406 XUNTAO HU

Note that if (m,n) and (m′, n′) lie in the same Γg-orbit, then on the level 2

cover A3(2), we must have ordDn
θm = ordDn′ θm′ . Thus it suffices to compute this

vanishing order for one element in each Γg-orbit of pairs (m,n).
Since the group Γg acts transitively on the set Dn of boundary components, each

orbit of (m,n) under Γg contains all possible values of n. We thus fix the boundary
component Dn, and apply the proposition to find the orbits of (m,n) when m is
varying: consider the set of triples (m,n, 0) where n is fixed and m is even (resp.
odd), so that the parity of m and n remains the same. Thus by Proposition 3.2,
the orbits only depend on e(m,n, 0). By definition e(m,n, 0) = e(m)e(n)e(m+ n),
hence there are two orbits of pairs (m,n) for n fixed, distinguished by the parity of
m+ n.

In order to calculate the vanishing order of theta constants on PV , we will also
need the description of the orbits of the Γg-action on the set of pairs (m,V ), where
V is a symplectic 2 dimensional subspace of (Z/2Z)2g.

Proposition 3.3. Let V = span(n1, n2) be a fixed symplectic 2 dimensional sub-
space of (Z/2Z)2g. There are two Γg-orbits of pairs (m,V ). These possibilities are
distinguished by the number of even elements in the set {m+n1,m+n2,m+n1+n2}
being 1 or 3.

Proof. Let X be the set of pairs (m,V ), Y be the set of quadruples {m,n1, n2, n1+
n2}. Let the map q : Y → X be the quotient under the symmetric group S3

permuting the last three elements. Thus q is Γg-equivariant. Denote the induced
map by q′ : Y/Γg → X/Γg.

By Proposition 3.2, the Γg-action on Y has eight orbits only depending on the
parities of the triple {m+ n1,m+ n2,m+ n1 + n2}, namely Y/Γg � F3

2. The map
q′ forgets the order of elements in the triple. Hence the orbits of σ depend only on
the number of even elements in the triple {m+ n1,m+ n2,m+ n1 + n2}.

Let ω is the standard symplectic form. Observe that for m odd and n1, n2

satisfying ω(n1, n2) �= 0, we have e(m+ n1 + n2) = e(m+ n1)e(m+ n2). The only
possibilities for the number of even elements in the triple {m+n1,m+n2,m+n1+
n2} are thus 1 or 3. �

3.2. Extension to the boundary. Extension of theta constants and theta gradi-
ents to the boundary component Dn is done in [GH12]. The vanishing orders are
computed using the Fourier-Jacobi expansion of the theta function (this expansion
is convenient for the computation that we will later do on Δ1):

(3.1) θ
[
ε′ ε
δ′ δ

]([
τ ′ b
bt τ

]
, 0
)
=

∑
k′∈Z,k′′∈Zg−1

expπi
[
2(k′ +

ε′

2
)b(k′′ +

ε

2
)
]
A(k′, k′′)

where

A(k′, k′′)=expπi

(
[(k′ +

ε′

2
)2τ ′ +(k′ +

ε′

2
)δ]+[(k′′+

ε

2
)tτ (k′′+

ε′

2
) + (k′′+

ε

2
)tδ]

)
.

By the characterization of the orbits of the Γg-action we only need to work on
a chosen boundary component Dn0

corresponding to n0 = [ 0 0 ... 0
1 0 ... 0 ]. Due to the

parity of the theta constants and the theta gradients, we assume the characteristic
m is even for θm, and is odd for gradz θm, so that they don’t vanish identically.
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The vanishing orders of θm(τ, 0) and gradz θm(τ, 0) on Dn0
are as follows:

Proposition 3.4. [GH12, Prop. 3.3] We have the following:

(3.2) ordDn0
θm(τ, 0) =

{
0 if e(m+ n0) = 1,
1
8 if e(m+ n0) = −1,

(3.3) ordDn0
gradz θm(τ, z)|z=0 =

{
( 12 , 0, . . . , 0) if e(m+ n0) = −1,

( 18 ,
1
8 , . . . ,

1
8 ) if e(m+ n0) = 1.

The notation above indicates the vanishing order for each partial derivative
( ∂
∂z1

θ, ∂
∂z2

θ . . . ∂
∂zg

θ).

For the boundary Δ1, we can do a similar computation, which to our knowledge
has not been done in the literature. Following [Yam80] and [Fay73], we will consider
the pinching/plumbing family of Riemann surfaces pinching a cycle homologous to
zero. For a Riemann surface C of genus g, we fix an element of π1(C) which maps
to zero in homology and is represented by a simple closed curve, and consider the
plumbing family C ⊂ M3 parameterized by shrinking the length s of this curve to
zero: for s �= 0 the curve Cs is smooth, while for s = 0 the curve C0 lies in Δ1. We
denote the period matrix of Cs by τs. By [Yam80, cor. 2], the expansion of τs near
s = 0 is:

τs =

[
τ1 0
0 τ2

]
− s

[
0 R
RT 0

]
+O(s),

where τ1 ∈ Matg1×g1(C) and τ2 ∈ Matg2×g2(C) where g1 and g2 are the genera
of the two irreducible components of C0, and R ∈ Matg1×g2(C) is some matrix
independent of s. We recall the factorization

(3.4) θ
[
ε′ ε
δ′ δ

]
(
[
τ ′ 0
0 τ ′′

]
, 0) = θ

[
ε′

δ′

]
(τ ′, 0)× θ[ εδ ](τ

′′, 0).

In our case g1 = 1, g2 = 2. As in the case of Δ0, in the following discussion
we assume m =

[
ε′ ε
δ′ δ

]
is even for θm, odd for gradz θm. Since ε′δ′ + εδ = 0, the

product in (3.4) vanishes if and only if ε′ · δ′ = 1 (because then both of the factors
are odd functions with respect to z). We now substitute τs given by the family
above into the Taylor expansion with respect to b = s · R given by (3.1), which
yields ordb θm(τ, 0) = 1 if ε′ · δ′ = 1, and it does not vanish generically otherwise.

Take now the component PV0
corresponding to:

V0 = Span(n1 = [ 1 0 0
0 0 0 ], n2 = [ 0 0 0

1 0 0 ]).

Then ū−1(PV0
) is a component of p′−1Δ1 in M3(2). Thus from the discussion

above, one can conclude:

Proposition 3.5. On the boundary component ū−1PV0
in M3(2), we have:

(3.5) ordb θm(τ, 0) =

{
1 if e(m+ n1) = e(m+ n2) = −1,

0 otherwise,

(3.6) ordb gradz θm(τ, 0) =

{
(0, 1, 1) if e(m+ n1) = e(m+ n2) = 1,

(1, 0, 0) otherwise.

The notation again indicates the vanishing order for each partial derivative of θ.
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Proof. We have the observation:

e(m+ n1) = (−1)(ε
′+1)δ′+εtδ = (−1)δ

′ · e(m),

e(m+ n2) = (−1)ε
′ · e(m).

Since we assume m is even, we have e(m) = 1. The conditions in the proposition
are the same as ε′ = δ′ = 1. The computation for theta gradients is parallel to the
computation for theta constants. We therefore omit it here. �
3.3. Class of the closure of the hyperflex locus. Let Ωm be the image of Ω77

under the action of Γg, so that it is a modular form with respect to Γ3(2) whose
zero locus in A3(2) is HFm. Denote for simplicity dm,n := ordDn

Ωm(τ, 0), and by
pm,V the vanishing order of the pullback of Ωm(τ, 0) on ū−1PV . There are only two
possible values of dm,n corresponding to the two Γg-orbits on (m,n) — we denote
these vanishing orders by d0 and d1 for the cases e(m+ n) = 0 and 1. Similarly let
p1 and p3 be the values of pm,V in the Γg-orbit on the set of pairs (m,V ) where the
subindex denotes the number of even elements in the triple from Proposition 3.3.
We have the following:

Proposition 3.6. In M3, we have

[HF ] = 308 · λ− (16d0 + 12d1) · δ0 − (10p3 + 18p1) · δ1.
Proof. It can be concluded from a direct computation that for each n ∈ (Z/2Z)6−0,
there are 16 oddm such thatm+n is even, and 12 oddm such thatm+n is odd; for a
fixed V , there are 18 odd theta characteristics m lying in the orbit corresponding to
the case when the number of even elements in the triple (m+n1,m+n2,m+n1+n2)
is 1, and 10 odd theta characteristics in the other orbit.

Consider the commutative diagram (1.2). Summing over all m, on M3(2) we
have:

ū′∗

( ∑
m odd

[HFm]

)
= 308 · p′∗λ−

∑
m,n

dm,n · ū′∗Dn −
∑
V,n

pm,V · ū′∗PV .

On the right hand side we have:

∑
m,n

dmn · ū′∗Dn = ū′∗

( ∑
m+n even

d0Dn +
∑

m+n odd

d1Dn

)

= ū′∗

(
d0

∑
n

16Dn + d1
∑
n

12Dn

)

= ū′∗

(
(16d0 + 12d1)

∑
n

Dn

)

= (16d0 + 12d1) · ū′∗(p∗D)

= (16d0 + 12d1) · p′∗δ0.
Similarly we have

∑
V,n pm,V · ū′∗PV = (10p3+18p1) ·p′∗δ1. For the same reason as

in equation (2.4), we have ū′∗ (∑
m odd [HFm]

)
= p′∗[HF ]. Pushing forward by p′,

by the projection formula both sides are multiples of deg(p′). Note that the level
cover map branches along the boundary components, but the projection formula
applies regardless of the branching. Finally we divide both sides by deg(p′) and
have the equality claimed. �
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We now use the results from the previous subsection to compute d0, d1, and
p1, p3.

Proposition 3.7. We have the following:

(3.7) dm,n =

{
5
4 if m+ n is even,

1 otherwise,

(3.8) pm,V =

{
4 all elements in the triple are even,

2 otherwise.

Proof. To do the calculation it is enough to choose a special representative in each
orbit. Fix m = 77. For d0 we choose n = 04 so that m+ n is even. The vanishing
orders on D04 of θ43, θ52, θ75, θ40, θ67, θ76 are all 1/8, while other theta constants
involved in the expression of Ω77 do not vanish identically on D04. We also have
ordD04

D(77, 64, 13) = ordD04
D(77, 51, 26) = 1/4, ordD04

D(77, 64, 51) = 3/8, and
ordD04

D(77, 13, 26) = 1/8. Hence we have d0 = min{(3/8 + 1/4)× 2, 6/8 + 3/8 +
1/8} = 5/4.

Similarly we choose n = 06 for the case m + n is odd. The vanishing orders
on D06 of θ43, θ52, θ37, θ40, θ25, θ34 are all 1/8, and all other theta constants in
Ω77 do not vanish identically on D06. We also have ordD06

D(77, 64, 13) = 1/2,
ordD06

D(77, 51, 26) = 1/4, and ordD06
D(77, 64, 51) = ordD06

D(77, 13, 26) = 1/8,
hence d1 = min{5/4, 1} = 1.

To compute the vanishing orders on PV , we now choose the standard symplectic
2-dim subgroup V0 as in Section 3.2. In this case m+n1,m+n2 are both even, and
we can thus compute p3. We will have ordV0

D(77, 64, 13) = ordV0
D(77, 64, 51) =

1, and ordV0
θ75 = ordV0

θ67 = ordV0
θ76 = 1 and all the others are zero, hence

p3 = min{(1 + 1)× 2, 4} = 4.
Similarly we choose V1 generated by n1 = [101, 000], n2 = [000, 100] to compute

p1. We have ordV1
D(77, 64, 51) = 1, ordV1

θ43 = ordV1
θ76 = 1, all others are

non-vanishing. We hence have p1 = min{1 · 2, 1 + 1 + 1} = 2.
Lastly, since the expression of the modular form is explicit, one checks by hand

that the lowest order term in each case does not get cancelled. �

Combining Proposition 3.2 and Proposition 3.3, we can verify Cukierman’s result
in [Cuk89]:

Corollary 3.8. In M3, we have

[HF ] = 308 · λ− 32 · δ0 − 76 · δ1.

Also, the class [HF ] in A3 is equal to 308 · L− 32 ·D.

Proof. We only need to plug in the values d0 = 5/4, d1 = 1, p1 = 2, p3 = 4 in
Proposition 3.6. The second claim follows easily. �

4. Boundary strata of higher codimension

Using the modular form Ω77, we can apply similar arguments to find the inter-
section of any boundary components of M3 with the closure of the hyperflex locus
HF . As an application, we consider the boundary stratum T ⊂ M3 parameterizing
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stable curves consisting of two genus one curves intersecting at two nodes (so-called
“banana curves”). This boundary stratum is contained in Δ0 and is indeed an ir-
reducible component of the self-intersection of Δ0. These curves are interesting
examples of stable curves of non-pseudocompact type.

Proposition 4.1. The boundary locus T is contained in the hyperflex locus HF .

Remark 4.2. This result was recently also shown by a different approach in [Che15].

To prove the proposition, we recall the general variational formula for the de-
generation of the period matrix of a Riemann surface of genus g with n nodes.
For n = 1, see [Yam80] and [Fay73], and for n ≥ 1, see [Tan89] and also [Tan91].
For i = 1 . . . n, fix elements [Si] ∈ π1(C) represented by simple closed curves Si

with lengths 0 ≤ si � 1. We also fix a homology basis {Aj , Bj}gj=1 such that for

1 ≤ i ≤ n, Si is homotopic to one of the Aj (possibly with a sign).

Lemma 4.3 ([Tan89, Thm 5]). For any 1 ≤ h, k ≤ g, the function

fh,k(s1, . . . , sn) := exp
(
2πiτh,k(s1, . . . , sn)

)
·

n∏
i=1

s
−Ni,h·Ni,k

i

is holomorphic in 0 ≤ si � 1 for i = 1 . . . n, where Ni,j is the intersection product
of Si and Bj, and

[
τh,k(s1, . . . , sn)

]
g×g

is the period matrix for C(s1, . . . , sn).

For the boundary locus T , we have g = 3 and n = 2 in the above lemma.
Furthermore, we choose the homology basis to be the standard one with intersection
matrix Id, so S1 and S2 are both homotopic to A1. By the lemma above, we have

(4.1) 2πiτh,k =

{
ln s1 + ln s2 + fh,k(s1, s2) for (h, k) = (1, 1),

fh,k(s1, s2) otherwise.

We thus write τ =

[
τ1 b1 b2
b1 τ2 c
b2 c τ3

]
, and recall Fourier-Jacobi expansion from (3.1).

We can then deduce the following facts about θ[ εδ ](τ, 0), which we will use in the
proof of Proposition 4.1:

(1) If ε1=1, then

θ

[
ε
δ

]
(τ, 0)=exp(

1

4
πiτ1)·exp(2πiδ1)·θ

[
ε2 ε3
δ2 δ3

]( [
τ2 c
c τ3

]
, (
b1
2
,
b2
2
)
)
+O(s1)+O(s2).

Note that due to (4.1), we have

exp(πiτ1)=s
1
2
1 s

1
2
2 · expG(s1, s2)

for some holomorphic function G(s1, s2). Hence in this case the vanishing
orders of θ[ εδ ](τ, 0) with respect to s1 and s2 are both 1

8 .

(2) If ε1 = 0, then similarly θ[ εδ ](τ, 0) = θ
[ ε2 ε3
δ2 δ3

]
([ τ2 c

c τ3 ], 0) + O(s1) + O(s2).
By definition [Tan89] of c = f2,3(s1, s2), we deduce that c = 0 when s1 =
s2 = 0, i.e., when the curve hits the boundary T . In that case, we have the
constant term θ

[ ε2 ε3
δ2 δ3

]
(
[
τ2 0
0 τ3

]
, 0) = θ

[ ε2
δ2

]
(τ2, 0) · θ

[ ε3
δ3

]
(τ3, 0) = 0 if and

only if ε2 = δ2 = 1. Hence the only theta constants with characteristics
that vanish when s1 = 0 and s2 = 0 are θ33(τ, 0) and θ37(τ, 0), but by
taking partial derivatives one can directly show that neither is divisible by
any power of (s1 · s2).
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Proof of Proposition 4.1. As in Proposition 3.4. we choose the standard boundary
component D04 so that the two cases ε1 = 0 or 1 correspond to the two orbits of
the Γg-action on the pair (m, 04). Hence by the same argument as the proof of
Proposition 3.7, we have

Ω77(τ, 0) = (s1 · s2)
5
4 · F (s1, s2)

for some holomorphic function F (s1, s2). Moreover, by the expression of Ω77 given
in Theorem 0.1, in each summand of Ω77 there is either a θ33 or a θ37 as a factor.
Thus

F (s1, s2) = θ[ 1 1
1 1 ]([

τ2 c
c τ3 ], 0) +O(s1) +O(s2)

where τi = fi,i(s1, s2) (i = 2 or 3) and c = f2,3(s1, s2) (as in (4.1)) are holomorphic
functions in s1 and s2, and c(0, 0) = 0. From the discussion directly proceeding the
proof, F (s1, s2) vanishes when s1 = 0 and s2 = 0, and F (s1, s2) is not divisible by
any power of (s1 · s2).

The normal direction to Δ0 in M3 is given by q = exp(πiτ11). T is an irreducible
component of the self-intersection of Δ0, and thus s1, s2 give the two normal direc-
tions. Because the modular form Ω77 vanishes along T with higher order in s1, s2
than q, we conclude that the boundary stratum T is contained in the hyperflex
locus HF . �

5. The catalecticant hypersurface

This section is devoted to a discussion of a different locus of plane quartics. In
1868, J. Lüroth discovered that a general plane quartic does not admit a polar pen-
tagon despite a dimension count which suggests that it is possible. A plane quartic
that admits a polar pentagon is called a Clebsch quartic. A detailed discussion can
be found in [Dol12, Sec. 6.3].

Let E be a vector space of dimension 3, and let F ∈ S4(E∨) be a degree 4
homogenous form on P(E). Consider the apolar map:

ap2F : S2(E) → S2(E∨), [. . . , xi ∧ xj , . . .] �→
[
. . . ,

∂2F

∂xi∂xj
, . . .

]
.

Fix a basis of E and a dual basis of E∨, the matrix of ap2F in these bases is then
called the catalecticant matrix of F , and is denoted by Cat2(F ).

It is easy to show [Dol12, Sec. 6.3.5] that a quartic C with the defining equation
F is Clebsch if and only if detCat2(F ) vanishes. The locus of such quartics in M3

is called the catalecticant hypersurface, and the class of its closure [Cat] ∈ Pic(M3)
was computed in [OS11]:

[Cat] = 56λ− 6δ0 − 16δ1.

We give a straightforward alternative derivation of this using modular forms.
Indeed, by the results of [DPFSM14], a plane quartic can be written as in equa-

tion (2.3) in terms of an Aronhold system of its bitangents. As in the case of
the hyperflex, we discard the coefficients consisting of products of theta constants
because they only vanish on some components of the hyperelliptic locus. Set

F = (af)2 + (be)2 + (cd)2 − 2afbe− 2becd− 2afcd,

where a, b, c, d, e, f are as in equation (2.3).
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Proposition 5.1. With the above F , detCat2(F ) is the modular form whose zero
locus in A3 is equal to the image of the locus of Clebsch quartics under the Torelli
map.

Proof. We only need to show that detCat2(F ) is a modular form. With the iden-
tification E � H0(C,KC)

∨ we take the standard basis w1, w2, w3 in E. F has
coefficients consisting of theta constants and theta gradients, as does detCat2(F ).
Since the theta constants and gradients are modular forms, detCat2(F ) is a mod-
ular form. �
Corollary 5.2. The expression detCat2(F ) is a modular form of weight 56, and
thus [Cat] = 56λ ∈ PicM3.

Proof. To compute the weight, note that in the basis w1, w2, w3, each of a, b, c, d, e, f
has coefficients which are products of 3 theta constants (of weight 1

2 ) and one theta

gradient (of weight 5
6 ). Thus each of the coefficients of F consists of 12 theta

constants and 4 theta gradients. To compute detCat2(F ) we need to take the coef-
ficients of the six second-order derivatives of F (the columns of Cat2(F )). Note that
the coefficients of second-order derivatives also consist of 12 theta constants and 4
theta gradients, thus each summand of the determinant of the 6 × 6 catalecticant
matrix is a product of 72 theta constants and 24 theta gradients. With the aid of
a computer we can confirm that there are no common factors among the entries of
detCat2(F ). Hence the weight of detCat2(F ) is 72× 1/2 + 24× 5/6 = 56. �

Implementing the vanishing orders of theta constants and theta gradients as
computed in Section 3, we also obtain with the aid of a computer the vanishing
orders of detCat2(F ) on Dn and PV , resulting in a computation of the coefficients
of δ0 and δ1 in the class [Cat].
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