MAT511 homework,          due Sept. 30, 2009


Let $ A$, $ B$, $ C$ be sets.

  1. Prove that $ A\subseteq B$ if and only if $ A - B = \emptyset$.

  2. Prove that $ C \subseteq (A\cap B)$ if and only if $ C \subseteq A$ and $ C \subseteq B$.

  3. Prove that $ {\mbox{${\mathcal{P}}\left(A \cap B\right)$}} = {\mbox{${\mathcal{P}}\left(A\right)$}} \cap {\mbox{${\mathcal{P}}\left(B\right)$}}$. You may use the results above.

  4. Prove that $ {\mbox{${\mathcal{P}}\left(A\right)$}} \cup {\mbox{${\mathcal{P}}\left(B\right)$}} \subseteq {\mbox{${\mathcal{P}}\left(A \cup B\right)$}}$.

  5. Give an example where $ {\mbox{${\mathcal{P}}\left(A\right)$}} \cup {\mbox{${\mathcal{P}}\left(B\right)$}} \ne {\mbox{${\mathcal{P}}\left(A \cup B\right)$}}$. What conditions are necessary on $ A$ and $ B$ to ensure that $ {\mbox{${\mathcal{P}}\left(A\right)$}} \cup {\mbox{${\mathcal{P}}\left(B\right)$}} = {\mbox{${\mathcal{P}}\left(A \cup B\right)$}}$?

  6. Show that there are no sets $ A$ and $ B$ for which $ {\mbox{${\mathcal{P}}\left(A-B\right)$}} = {\mbox{${\mathcal{P}}\left(A\right)$}} - {\mbox{${\mathcal{P}}\left(B\right)$}}$.

  7. Let $ \mathcal{A}$ be the family of all sets of integers containing $ 10$. What are the sets $ {\displaystyle \bigcup _{A \in \mathcal{A}} A}$ and $ {\displaystyle \bigcap _{A \in \mathcal{A}} A}$ ? Justify your answer.

  8. Let $ {\displaystyle A_n = \left[ \frac{1}{n}, 2+\frac{1}{n} \right]}$. What are the sets $ {\displaystyle \bigcup _{n \in ({\mathbb{N}}- \left\{{1,2}\right\})} \hspace{-1.2em}A_n}$ and $ {\displaystyle \bigcap _{n \in ({\mathbb{N}}- \left\{{1,2}\right\})}\hspace{-1.2em} A_n }$ ? Justify your answer.

  9. Let $ \mathcal{A}$ and $ \mathcal{B}$ be two pairwise disjoint families of sets. Let $ \mathcal{C} = \mathcal{A} \cap \mathcal{B}$, and $ \mathcal{D} = \mathcal{A} \cup \mathcal{B}$.
    1. Prove that $ \mathcal{C}$ is a pairwise disjoint family of sets.
    2. Give an example where $ \mathcal{D}$ is not a pairwise disjoint family of sets.
    3. Prove that if the sets $ {\displaystyle \bigcup _{A \in \mathcal{A}} A}$ and $ {\displaystyle \bigcup _{B \in \mathcal{B}} B}$ are disjoint, then $ \mathcal{D}$ is a pairwise disjoint family.



Tony Phillips 2006-09-20