Notes on Second Order Linear Differential Equations

Stony Brook University Mathematics Department

1. The general second order homogeneous linear differential equation with constant coefficients looks like

$$
A y^{\prime \prime}+B y^{\prime}+C y=0
$$

where y is an unknown function of the variable x, and A, B, and C are constants. If $A=0$ this becomes a first order linear equation, which we already know how to solve. So we will consider the case $A \neq 0$. We can divide through by A and obtain the equivalent equation

$$
y^{\prime \prime}+b y^{\prime}+c y=0
$$

where $b=B / A$ and $c=C / A$.
"Linear with constant coefficients" means that each term in the equation is a constant times y or a derivative of y. "Homogeneous" excludes equations like $y^{\prime \prime}+b y^{\prime}+c y=f(x)$ which can be solved, in certain important cases, by an extension of the methods we will study here.
2. In order to solve this equation, we guess that there is a solution of the form

$$
y=e^{\lambda x}
$$

where λ is an unknown constant. Why? Because it works!
We substitute $y=e^{\lambda x}$ in our equation. This gives

$$
\lambda^{2} e^{\lambda x}+b \lambda e^{\lambda x}+c e^{\lambda x}=0 .
$$

Since $e^{\lambda x}$ is never zero, we can divide through and get the equation

$$
\lambda^{2}+b \lambda+c=0
$$

Whenever λ is a solution of this equation, $y=e^{\lambda x}$ will automatically be a solution of our original differential equation, and if λ is not a solution, then $y=e^{\lambda x}$ cannot solve the differential equation. So the substitution $y=e^{\lambda x}$ transforms the differential equation into an algebraic equation!

Example 1. Consider the differential equation

$$
y^{\prime \prime}-y=0
$$

Plugging in $y=e^{\lambda x}$ give us the associated equation

$$
\lambda^{2}-1=0
$$

which factors as

$$
(\lambda+1)(\lambda-1)=0
$$

this equation has $\lambda=1$ and $\lambda=-1$ as solutions. Both $y=e^{x}$ and $y=e^{-x}$ are solutions to the differential equation $y^{\prime \prime}-y=0$. (You should check this for yourself!)

Example 2. For the differential equation

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

we look for the roots of the associated algebraic equation

$$
\lambda^{2}+\lambda-2=0
$$

Since this factors as $(\lambda-1)(\lambda+2)=0$, we get both $y=e^{x}$ and $y=e^{-2 x}$ as solutions to the differential equation. Again, you should check that these are solutions.
3. For the general equation of the form

$$
y^{\prime \prime}+b y^{\prime}+c y=0
$$

we need to find the roots of $\lambda^{2}+b \lambda+c=0$, which we can do using the quadratic formula to get

$$
\lambda=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

If the discriminant $b^{2}-4 c$ is positive, then there are two solutions, one for the plus sign and one for the minus.

This is what we saw in the two examples above.
Now here is a useful fact about linear differential equations: if y_{1} and y_{2} are solutions of the homogeneous differential equation $y^{\prime \prime}+b y^{\prime}+c y=0$, then so is the linear combination $p y_{1}+q y_{2}$ for any numbers p and q. This fact is easy to check (just plug $p y_{1}+q y_{2}$ into the equation and regroup terms; note that the coefficients b and c do not need to be constant for this to work. This means that for the differential equation in Example 1 ($y^{\prime \prime}-y=0$), any function of the form

$$
p e^{x}+q e^{-x} \quad \text { where } p \text { and } q \text { are any constants }
$$

is a solution. Indeed, while we can't justify it here, all solutions are of this form. Similarly, in Example 2, the general solution of

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

is

$$
y=p e^{x}+q e^{-2 x}, \quad \text { where } p \text { and } q \text { are constants. }
$$

4. If the discriminant $b^{2}-4 c$ is negative, then the equation $\lambda^{2}+b \lambda+c=0$ has no solutions, unless we enlarge the number field to include $i=\sqrt{-1}$, i.e. unless we work with complex numbers. If $b^{2}-4 c<0$, then since we can write any positive number as a square k^{2}, we let $k^{2}=-\left(b^{2}-4 c\right)$. Then $i k$ will be a square root of $b^{2}-4 c$, since $(i k)^{2}=i^{2} k^{2}=(-1) k^{2}=-k^{2}=b^{2}-4 c$. The solutions of the associated algebraic equation are then

$$
\lambda_{1}=\frac{-b+i k}{2}, \quad \lambda_{2}=\frac{-b-i k}{2}
$$

Example 3. If we start with the differential equation $y^{\prime \prime}+y=0$ (so $b=0$ and $c=1$) the discriminant is $b^{2}-4 c=-4$, so $2 i$ is a square root of the discriminant and the solutions of the associated algebraic equation are $\lambda_{1}=i$ and $\lambda_{2}=-i$.

Example 4. If the differential equation is $y^{\prime \prime}+2 y^{\prime}+2 y=0$ (so $b=2$ and $c=2$ and $\left.b^{2}-4 c=4-8=-4\right)$. In this case the solutions of the associated algebraic equation are $\lambda=(-2 \pm 2 i) / 2$, i.e. $\lambda_{1}=-1+i$ and $\lambda_{2}=-1-i$.
5. Going from the solutions of the associated algebraic equation to the solutions of the differential equation involves interpreting $e^{\lambda x}$ as a function of x when λ is a complex number. Suppose λ has real part a and imaginary part $i b$, so that $\lambda=a+i b$ with a and b real numbers. Then

$$
e^{\lambda x}=e^{(a+i b) x}=e^{a x} e^{i b x}
$$

assuming for the moment that complex numbers can be exponentiated so as to satisfy the law of exponents. The factor $e^{a x}$ does not cause a problem, but what is $e^{i b x}$? Everything will work out if we take

$$
e^{i b x}=\cos (b x)+i \sin (b x)
$$

and we will see later that this formula is a necessary consequence of the elementary properties of the exponential, sine and cosine functions.
6. Let us try this formula with our examples.

Example 3. For $y^{\prime \prime}+y=0$ we found $\lambda_{1}=i$ and $\lambda_{2}=-i$, so the solutions are $y_{1}=e^{i x}$ and $y_{2}=e^{-i x}$. The formula gives us $y_{1}=\cos x+i \sin x$ and $y_{2}=\cos x-i \sin x$.

Our earlier observation that if y_{1} and y_{2} are solutions of the linear differential equation, then so is the combination $p y_{1}+q y_{2}$ for any numbers p and q holds even if p and q are complex constants.

Using this fact with the solutions from our example, we notice that $\frac{1}{2}\left(y_{1}+y_{2}\right)=\cos x$ and $\frac{1}{2 i}\left(y_{1}-y_{2}\right)=\sin x$ are both solutions. When we are given a problem with real coefficients it is customary, and always possible, to exhibit real solutions. Using the fact about linear combinations again, we can say that $y=p \cos x+q \sin x$ is a solution for any p and q. This is the general solution. (It is also correct to call $y=p e^{i x}+q e^{-i x}$ the general solution; which one you use depends on the context.)
Example 4. $y^{\prime \prime}+2 y^{\prime}+2 y=0$. We found $\lambda_{1}=-1+i$ and $\lambda_{2}=-1-i$. Using the formula we have

$$
\begin{gathered}
y_{1}=e^{\lambda_{1} x}=e^{(-1+i) x}=e^{-x} e^{i x}=e^{-x}(\cos x+i \sin x) \\
y_{2}=e^{\lambda_{2} x}=e^{(-1-i) x}=e^{-x} e^{-i x}=e^{-x}(\cos x-i \sin x)
\end{gathered}
$$

Exactly as before we can take $\frac{1}{2}\left(y_{1}+y_{2}\right)$ and $\frac{1}{2 i}\left(y_{1}-y_{2}\right)$ to get the real solutions $e^{-x} \cos x$ and $e^{-x} \sin x$. (Check that these functions both satisfy the differential equation!) The general solution will be $y=p e^{-x} \cos x+q e^{-x} \sin x$.
7. Repeated roots. Suppose the discriminant is zero: $b^{2}-4 c=0$. Then the "characteristic equation" $\lambda^{2}+b \lambda+c=0$ has one root. In this case both $e^{\lambda x}$ and $x e^{\lambda x}$ are solutions of the differential equation.

Example 5. Consider the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$. Here $b=c=4$. The discriminant is $b^{2}-4 c=4^{2}-4 \times 4=0$. The only root is $\lambda=-2$. Check that both $e^{-2 x}$ and $x e^{-2 x}$ are solutions. The general solution is then $y=p e^{-2 x}+q x e^{-2 x}$.
8. Initial Conditions. For a first-order differential equation the undetermined constant can be adjusted to make the solution satisfy the initial condition $y(0)=y_{0}$; in the same way the p and the q in the general solution of a second order differential equation can be adjusted to satisfy initial conditions. Now there are two: we can specify both the value and the first derivative of the solution for some "initial" value of x.
Example 5. Suppose that for the differential equation of Example 2, $y^{\prime \prime}+y^{\prime}-2 y=0$, we want a solution with $y(0)=1$ and $y^{\prime}(0)=-1$. The general solution is $y=p e^{x}+q e^{-2 x}$, since the two roots of the characteristic equation are 1 and -2 . The method is to write down what the initial conditions mean in terms of the general solution, and then to solve for p and q. In this case we have

$$
\begin{gathered}
1=y(0)=p e 0+q e^{-2 \times 0}=p+q \\
-1=y^{\prime}(0)=p e 0-2 q e^{-2 \times 0}=p-2 q .
\end{gathered}
$$

This leads to the set of linear equations $p+q=1, p-2 q=-1$ with solution $q=2 / 3, p=$ $1 / 3$. You should check that the solution

$$
y=\frac{1}{3} e^{x}+\frac{2}{3} e^{-2 x}
$$

satisfies the initial conditions.
Example 6. For the differential equation of Example 4, $y^{\prime \prime}+2 y^{\prime}+2 y=0$, we found the general solution $y=p e^{-x} \cos x+q e^{-x} \sin x$. To find a solution satisfying the initial conditions $y(0)=-2$ and $y^{\prime}(0)=1$ we proceed as in the last example:

$$
\begin{gathered}
-2=y(0)=p e^{-0} \cos 0+q e^{-0} \sin 0=p \\
1=y^{\prime}(0)=-p e^{-0} \cos 0-p e^{-0} \sin 0-q e^{-0} \sin 0+q e^{-0} \cos 0=-p+q
\end{gathered}
$$

So $p=-2$ and $q=-1$. Again check that the solution

$$
y=-2 e^{-x} \cos x-e^{-x} \sin x
$$

satisfies the initial conditions.

Problems cribbed from Salas-Hille-Etgen, page 1133
In exercises 1-10, find the general solution. Give the real form.

1. $y^{\prime \prime}-13 y^{\prime}+42 y=0$.
2. $y^{\prime \prime}+7 y^{\prime}+3 y=0$.
3. $y^{\prime \prime}-3 y^{\prime}+8 y=0$.
4. $y^{\prime \prime}-12 y=0$.
5. $y^{\prime \prime}+12 y=0$.
6. $y^{\prime \prime}-3 y^{\prime}+\frac{9}{4} y=0$.
7. $2 y^{\prime \prime}+3 y^{\prime}=0$.
8. $y^{\prime \prime}-y^{\prime}-30 y=0$.
9. $y^{\prime \prime}-4 y^{\prime}+4 y=0$.
10. $5 y^{\prime \prime}-2 y^{\prime}+y=0$.

In exercises 11-16, solve the given initial-value problem.
11. $y^{\prime \prime}-5 y^{\prime}+6 y=0, \quad y(0)=1, \quad y^{\prime}(0)=1$
12. $y^{\prime \prime}+2 y^{\prime}+y=0, \quad y(2)=1, y^{\prime}(2)=2$
13. $y^{\prime \prime}+\frac{1}{4} y=0, \quad y(\pi)=1, \quad y^{\prime}(\pi)=-1$
14. $y^{\prime \prime}-2 y^{\prime}+2 y=0, \quad y(0)=-1, \quad y^{\prime}(0)=-1$
15. $y^{\prime \prime}+4 y^{\prime}+4 y=0, \quad y(-1)=2, \quad y^{\prime}(-1)=1$
16. $y^{\prime \prime}-2 y^{\prime}+5 y=0, \quad y(\pi / 2)=0, \quad y^{\prime}(\pi / 2)=2$

