
Midterm 1 Solutions

Note that there different forms of this test; yours may be slightly different

from this one.

1. (a) (15 points) What are the 4 fourth roots of −9?

Write −9 as 9eiπ. Then the rule for n-th roots gives the four roots
as
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4
), k = 0, 1, 2, 3.

(b) (15 points) Write z4 + 9 as (z − r1)(z − r2)(z − r3)(z − r4).

The four roots calculated above are:
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This gives

z4+9 = (z−
√

3
1 + i√

2
)(z−

√
3
−1 + i√

2
)(z−

√
3
−1 − i√

2
)(z−

√
3
1 − i√

2
).

(c) (15 points) Use the fact that the complex roots of a polynomial
with real coefficients come in complex conjugate pairs to write z4+
9 as a product of two quadratic polynomials with real coefficients.

In this case r1 and r4 are complex conjugates, as are r2 and r3. To
shorten notation, notice that (z − a)(z − a) = z2 − 2<(a) + |a|2,
where <(a) is the real part of a. So:
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so finally

z4 + 9 = (z2 −
√

6z + 3)(z2 +
√

6z + 3).

An alternative method was to write

z4 + 9 = (z2 + 3i)(z2 − 3i)

and

z2 + 3i = (z − i
√

3i)(z + i
√

3i); z2 − 3i = (z +
√
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to get
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√
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Here it’s not obvious which roots are complex conjugates: best to
work it out with

√
3i =

√
31+i√

2
.

2. (a) (15 points) What is the image of the line =(z) = 1 [i.e. {x+iy|y =
1}] under the mapping w = z2?

The mapping w = z2 takes (x, y) to (u = x2 − y2, v = 2xy). So
the line =(z) = 1 goes to (u = x2 − 1, v = 2x). [This is also true
of the line =(z) = −1 given on some of the forms of the test]. The
image of the line is therefore the parabola (u = x2 − 1, v = 2x),
or u = (v

2
)2 − 1.

(b) (15 points) Sketch the image of the half-plane =(z) ≥ 1 under the
mapping w = z2.

The mapping w = z2 takes each line =(z) = c into a parabola;
when c = 0 this is the degenerate parabola represented by the
positive u-axis covered twice. As 0 ≤ c ≤ 1 these parabolas fill
the shaded region in the picture here, the “inside” of the parabola
u = (v

2
)2−1. As 1 ≤ c ≤ ∞ the parabolas fill in the outside of the

shaded area. So the closed upper half-plane =(z) ≥ 0 maps onto
the entire (u, v)-plane, with the positive u-axis covered twice.

Since (−z)2 = z2 the same thing happens for negative imaginary
values: The region −1 ≤ y ≤ 0 maps to the shaded area, and the
region −∞ ≤ y ≤ −1 fills in the outside of the shaded area.

Depending on the form of the test you had, the answers were:
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• =(y) ≥ 1 maps to the outside of the shaded region.

• =(y) ≥ −1 covers the whole plane. (Shaded region gets cov-
ered twice).

• =(y) ≤ 1 covers the whole plane. (Shaded region gets covered
twice).

• =(y) ≤ −1 maps to the outside of the shaded region.

Figure 1: The parabola u = (v/2)2 − 1 is the image of the line =(z) = 1 [and
also of the line =(z) = −1].

3. (a) (15 points) Show carefully by an ε, δ argument that

lim
z→a

f(z)

g(z)
= 0

if limz→a f(z) = 0 and if there exists a pair of positive numbers
δ0,M such that |z − a| < δ0 implies |g(z)| ≥ M .
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Part (a) was almost identical to Problem 9 page 54, which we went
over twice in class:

Given ε:

Since limz→a f(z) = 0 there is a δ1 such that |z−a| < δ1 guarantees
|f(z)| < εM .

Now take δ = min(δ0, δ1). If |z − a| < δ, then |f(z)| < εM and
|g(z)| ≥ M ; hence

|f(z)

g(z)
| =

|f(z)|
|g(z)| <

εM

M
= ε.

(b) (10 points)Apply this to prove that

lim
z→0

z

2 +
z

z

= 0.

Since lim z → 0z = 0, it is enough by part (a) to find a δ0 and
an M that work for the denominator 2 + z

z
. (You need something

like this, because limz→0
z

z
does not exist). The triangle inequality

(“backwards”) gives

|2 +
z

z
| ≥ 2 − |z

z
| = 2 − |z|

|z| = 2 − 1 = 1.

So any positive number works for δ0 with M = 1.
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