Midterm 1 Solutions

Note that there different forms of this test; yours may be slightly different from this one.

1. (a) (15 points) What are the 4 fourth roots of -9 ?

Write -9 as $9 e^{i \pi}$. Then the rule for n-th roots gives the four roots as

$$
\sqrt[4]{9} e^{i\left(\frac{\pi}{4}+\frac{2 k \pi}{4}\right)}, \quad k=0,1,2,3
$$

(b) (15 points) Write $z^{4}+9$ as $\left(z-r_{1}\right)\left(z-r_{2}\right)\left(z-r_{3}\right)\left(z-r_{4}\right)$.

The four roots calculated above are:

$$
\begin{array}{cl}
r_{1}=\sqrt{3} e^{i \frac{\pi}{4}} & =\sqrt{3} \frac{1+i}{\sqrt{2}} \\
r_{2}=\sqrt{3} e^{i\left(\frac{\pi}{4}+\frac{2 \pi}{4}\right)} & =\sqrt{3} \frac{-1+i}{\sqrt{2}} \\
r_{3}=\sqrt{3} e^{i\left(\frac{\pi}{4}+\frac{4 \pi}{4}\right)} & =\sqrt{3} \frac{-1-i}{\sqrt{2}} \\
r_{4}=\sqrt{3} e^{i\left(\frac{\pi}{4}+\frac{6 \pi}{4}\right)} & =\sqrt{3} \frac{1-i}{\sqrt{2}}
\end{array}
$$

This gives
$z^{4}+9=\left(z-\sqrt{3} \frac{1+i}{\sqrt{2}}\right)\left(z-\sqrt{3} \frac{-1+i}{\sqrt{2}}\right)\left(z-\sqrt{3} \frac{-1-i}{\sqrt{2}}\right)\left(z-\sqrt{3} \frac{1-i}{\sqrt{2}}\right)$.
(c) (15 points) Use the fact that the complex roots of a polynomial with real coefficients come in complex conjugate pairs to write $z^{4}+$ 9 as a product of two quadratic polynomials with real coefficients.

In this case r_{1} and r_{4} are complex conjugates, as are r_{2} and r_{3}. To shorten notation, notice that $(z-a)(z-\bar{a})=z^{2}-2 \Re(a)+|a|^{2}$, where $\Re(a)$ is the real part of a. So:

$$
\left(z-r_{1}\right)\left(z-r_{4}\right)=z^{2}-2 \sqrt{3} \frac{1}{\sqrt{2}} z+3=z^{2}-\sqrt{6} z+3
$$

and

$$
\left(z-r_{2}\right)\left(z-r_{3}\right)=z^{2}-2 \sqrt{3} \frac{-1}{\sqrt{2}} z+3=z^{2}+\sqrt{6} z+3
$$

so finally

$$
z^{4}+9=\left(z^{2}-\sqrt{6} z+3\right)\left(z^{2}+\sqrt{6} z+3\right) .
$$

An alternative method was to write

$$
z^{4}+9=\left(z^{2}+3 i\right)\left(z^{2}-3 i\right)
$$

and

$$
z^{2}+3 i=(z-i \sqrt{3 i})(z+i \sqrt{3 i}) ; \quad z^{2}-3 i=(z+\sqrt{3 i})(z-\sqrt{3 i})
$$

to get

$$
z^{4}+9=(z-i \sqrt{3 i})(z+i \sqrt{3 i})(z+\sqrt{3 i})(z-\sqrt{3 i})
$$

Here it's not obvious which roots are complex conjugates: best to work it out with $\sqrt{3 i}=\sqrt{3} \frac{1+i}{\sqrt{2}}$.
2. (a) (15 points) What is the image of the line $\Im(z)=1$ [i.e. $\{x+i y \mid y=$ $1\}$] under the mapping $w=z^{2}$?

The mapping $w=z^{2}$ takes (x, y) to $\left(u=x^{2}-y^{2}, v=2 x y\right)$. So the line $\Im(z)=1$ goes to $\left(u=x^{2}-1, v=2 x\right)$. [This is also true of the line $\Im(z)=-1$ given on some of the forms of the test]. The image of the line is therefore the parabola $\left(u=x^{2}-1, v=2 x\right)$, or $u=\left(\frac{v}{2}\right)^{2}-1$.
(b) (15 points) Sketch the image of the half-plane $\Im(z) \geq 1$ under the mapping $w=z^{2}$.

The mapping $w=z^{2}$ takes each line $\Im(z)=c$ into a parabola; when $c=0$ this is the degenerate parabola represented by the positive u-axis covered twice. As $0 \leq c \leq 1$ these parabolas fill the shaded region in the picture here, the "inside" of the parabola $u=\left(\frac{v}{2}\right)^{2}-1$. As $1 \leq c \leq \infty$ the parabolas fill in the outside of the shaded area. So the closed upper half-plane $\Im(z) \geq 0$ maps onto the entire (u, v)-plane, with the positive u-axis covered twice.
Since $(-z)^{2}=z^{2}$ the same thing happens for negative imaginary values: The region $-1 \leq y \leq 0$ maps to the shaded area, and the region $-\infty \leq y \leq-1$ fills in the outside of the shaded area.
Depending on the form of the test you had, the answers were:

- $\Im(y) \geq 1$ maps to the outside of the shaded region.
- $\Im(y) \geq-1$ covers the whole plane. (Shaded region gets covered twice).
- $\Im(y) \leq 1$ covers the whole plane. (Shaded region gets covered twice).
- $\Im(y) \leq-1$ maps to the outside of the shaded region.

Figure 1: The parabola $u=(v / 2)^{2}-1$ is the image of the line $\Im(z)=1$ [and also of the line $\Im(z)=-1]$.
3. (a) (15 points) Show carefully by an ϵ, δ argument that

$$
\lim _{z \rightarrow a} \frac{f(z)}{g(z)}=0
$$

if $\lim _{z \rightarrow a} f(z)=0$ and if there exists a pair of positive numbers δ_{0}, M such that $|z-a|<\delta_{0}$ implies $|g(z)| \geq M$.

Part (a) was almost identical to Problem 9 page 54, which we went over twice in class:
Given ϵ :
Since $\lim _{z \rightarrow a} f(z)=0$ there is a δ_{1} such that $|z-a|<\delta_{1}$ guarantees $|f(z)|<\epsilon M$.
Now take $\delta=\min \left(\delta_{0}, \delta_{1}\right)$. If $|z-a|<\delta$, then $|f(z)|<\epsilon M$ and $|g(z)| \geq M$; hence

$$
\left|\frac{f(z)}{g(z)}\right|=\frac{|f(z)|}{|g(z)|}<\frac{\epsilon M}{M}=\epsilon .
$$

(b) (10 points)Apply this to prove that

$$
\lim _{z \rightarrow 0} \frac{z}{2+\frac{\bar{z}}{z}}=0
$$

Since $\lim z \rightarrow 0 z=0$, it is enough by part (a) to find a δ_{0} and an M that work for the denominator $2+\frac{\bar{z}}{z}$. (You need something like this, because $\lim _{z \rightarrow 0} \frac{\bar{z}}{z}$ does not exist). The triangle inequality ("backwards") gives

$$
\left|2+\frac{\bar{z}}{z}\right| \geq 2-\left|\frac{\bar{z}}{z}\right|=2-\frac{|\bar{z}|}{|z|}=2-1=1 .
$$

So any positive number works for δ_{0} with $M=1$.

