My NAME is:

Problem	1	2	3	Total
Score				

MAT 342
 Applied Complex Variables Midterm 1

February 27, 2007
CALCULATOR AND CELLPHONE POLICY: No calculators or computers may be used on this text. NO CELLPHONES are permitted in the examination room.

Show all your work on these pages! Total score $=100$

1. (a) (15 points) What are the 4 fourth roots of -9 ?
(b) (15 points) Write $z^{4}+9$ as $\left(z-r_{1}\right)\left(z-r_{2}\right)\left(z-r_{3}\right)\left(z-r_{4}\right)$.
(c) (15 points) Use the fact that the complex roots of a polynomial with real coefficients come in complex conjugate pairs to write $z^{4}+9$ as a product of two quadratic polynomials with real coefficients.
2. (a) (15 points) What is the image of the line $\Im(z)=1$ [i.e. $\{x+i y \mid y=1\}$] under the mapping $w=z^{2}$?
(b) (15 points) Sketch the image of the half-plane $\Im(z) \geq 1$ under the mapping $w=z^{2}$.
3. (a) (15 points) Show carefully by an ϵ, δ argument that

$$
\lim _{z \rightarrow a} \frac{f(z)}{g(z)}=0
$$

if $\lim _{z \rightarrow a} f(z)=0$ and if there exists a pair of positive numbers δ_{0}, M such that $|z-a|<\delta_{0}$ implies $|g(z)| \geq M$.
(b) (10 points)Apply this to prove that

$$
\lim _{z \rightarrow 0} \frac{z}{2+\frac{\bar{z}}{z}}=0
$$

