Some limit problems: solutions.
The method is always the same. The problem is of the form

$$
\lim _{z \rightarrow a} f(z)=L
$$

Unraveling the definition of limit, this means that given any $\epsilon>0$ we can produce a $\delta>0$ so that $|f(z)-L|<\epsilon$ whenever $|z-a|<\delta$.

We proceed as follows: we work backwards, by setting $z=a+d$ and looking at how far $f(a+d)$ is from L. We calculate that distance in terms of $|d|=\delta$ and then find a way to bound δ to make that distance less than ϵ.
1.

$$
\lim _{z \rightarrow i} \frac{1}{(z+i)^{2}}=\frac{-1}{4}
$$

Solution: Here the function whose limit we are studying is $f(z)=$ $\frac{1}{(z+i)^{2}}$. Given $\epsilon>0$ we need to produce a δ so that $\left|f(z)-\frac{1}{4}\right|<\epsilon$ whenever $|z-i|<\delta$. We work backwards, by setting $z=i+d$ and looking at how far $f(z)$ is from $\frac{1}{4}$. Then we will calculate how to bound $|d|=\delta$ to make that distance less than ϵ.

$$
\begin{gathered}
f(i+d)=\frac{1}{(2 i+d)^{2}} \\
f(i+d)-\frac{-1}{4}=\frac{4+(2 i+d)^{2}}{4(2 i+d)^{2}}=\frac{4 i d+d^{2}}{4(2 i+d)^{2}}
\end{gathered}
$$

RULE: to control a fraction, you need an upper bound for the numerator and a lower bound for the denominator.

Control of denominator: We work on the $(2 i+d)^{2}$ in the denominator by running the triangle inequality backwards: $2 i=(2 i+d)-d$ so $|2 i| \leq|2 i+d|+|d|$ and $|2 i+d| \geq|2 i|-|d|=2-\delta$.
If $\delta<1$ then $2-\delta>1$ and the denominator $4(2 i+d)^{2}$, in absolute value, will satisfy

$$
\left|4(2 i+d)^{2}\right|=4|2 i+d|^{2} \geq 4(2-\delta)^{2}>4
$$

Control of numerator: By the triangle inequality,

$$
\left|4 i d+d^{2}\right| \leq 4 \delta+\delta^{2}
$$

Since when $\delta<1$ the denominator is >4, we can make the whole fraction less than ϵ by further shrinking δ to make the numerator $<4 \epsilon$. We can do that by choosing $\delta<\epsilon / 2$, because then $4 \delta<2 \epsilon$ and $\delta^{2}<\epsilon / 2$ (since we have already required $\delta<1$) so their sum is $<2 \epsilon+\epsilon / 2<4 \epsilon$. Putting it all together:
If $|d|=\delta<\min (\epsilon / 2,1)$ then $|f(i+d)-(-1 / 4)|<\epsilon$.
2.

$$
\lim _{z \rightarrow-i}\left(\bar{z}^{2}-z\right)=i-1
$$

Solution: Set $z=-i+d$; then $\bar{z}=i+\bar{d}$ and

$$
\bar{z}^{2}-z-(i-1)=i^{2}+2 i \bar{d}+\bar{d}^{2}+i-d-i+1=\bar{d}^{2}+2 i \bar{d}-d
$$

In absolute value,

$$
\left.\left|\bar{z}^{2}-z-(i-1)\right|=\mid \bar{d}^{2}+2 i \bar{d}-d\right) \mid \leq \delta^{2}+2 \delta+\delta=\delta^{2}+3 \delta
$$

since d and \bar{d} have the same absolute value.
So choosing $\delta<\min (\epsilon / 6,3)$ makes

$$
\delta^{2}+3 \delta<\epsilon / 2+\epsilon / 2=\epsilon
$$

3.

$$
\lim _{z \rightarrow i} \frac{z^{3}+i}{z-i}=-3
$$

Solution: Set $z=i+d$; then since $(i+d)^{3}=-i-3 d+3 i d^{2}+d^{3}$, we have

$$
\frac{z^{3}+i}{z-i}=\frac{-i-3 d+3 i d^{2}+d^{3}+i}{i+d-i}=\frac{-3 d+3 i d^{2}+d^{3}}{d}=-3+3 i d+d^{2} .
$$

The distance from this point to -3 is

$$
\left|-3+3 i d+d^{2}+3\right|=\left|3 i d+d^{2}\right| \leq 3 \delta+\delta^{2}
$$

We can make this distance smaller than ϵ by choosing $\delta<\min (\epsilon / 6,3)$. Then

$$
3 \delta+\delta^{2}<3(\epsilon / 6)+3 \cdot \epsilon / 6=\epsilon
$$

