Some limit problems: solutions.

The method is always the same. The problem is of the form

$$\lim_{z \to a} f(z) = L.$$

Unraveling the definition of limit, this means that given any $\epsilon > 0$ we can produce a $\delta > 0$ so that $|f(z) - L| < \epsilon$ whenever $|z - a| < \delta$.

We proceed as follows: we work backwards, by setting z = a + d and looking at how far f(a + d) is from L. We calculate that distance in terms of $|d| = \delta$ and then find a way to bound δ to make that distance less than ϵ .

$$\lim_{z \to i} \frac{1}{(z+i)^2} = \frac{-1}{4}$$

Solution: Here the function whose limit we are studying is $f(z) = \frac{1}{(z+i)^2}$. Given $\epsilon > 0$ we need to produce a δ so that $|f(z) - \frac{1}{4}| < \epsilon$ whenever $|z - i| < \delta$. We work backwards, by setting z = i + d and looking at how far f(z) is from $\frac{1}{4}$. Then we will calculate how to bound $|d| = \delta$ to make that distance less than ϵ .

$$f(i+d) = \frac{1}{(2i+d)^2}.$$
$$f(i+d) - \frac{-1}{4} = \frac{4 + (2i+d)^2}{4(2i+d)^2} = \frac{4id+d^2}{4(2i+d)^2}.$$

RULE: to control a fraction, you need an upper bound for the numerator and a *lower* bound for the denominator.

Control of denominator: We work on the $(2i + d)^2$ in the denominator by running the triangle inequality backwards: 2i = (2i + d) - d so $|2i| \le |2i + d| + |d|$ and $|2i + d| \ge |2i| - |d| = 2 - \delta$.

If $\delta < 1$ then $2 - \delta > 1$ and the denominator $4(2i + d)^2$, in absolute value, will satisfy

$$|4(2i+d)^2| = 4|2i+d|^2 \ge 4(2-\delta)^2 > 4.$$

Control of numerator: By the triangle inequality,

$$|4id + d^2| \le 4\delta + \delta^2.$$

Since when $\delta < 1$ the denominator is > 4, we can make the whole fraction less than ϵ by further shrinking δ to make the numerator $< 4\epsilon$. We can do that by choosing $\delta < \epsilon/2$, because then $4\delta < 2\epsilon$ and $\delta^2 < \epsilon/2$ (since we have already required $\delta < 1$) so their sum is $< 2\epsilon + \epsilon/2 < 4\epsilon$. Putting it all together:

If
$$|d| = \delta < \min(\epsilon/2, 1)$$
 then $|f(i+d) - (-1/4)| < \epsilon$.

2.

$$\lim_{z \to -i} (\overline{z}^2 - z) = i - 1$$

Solution: Set z = -i + d; then $\overline{z} = i + \overline{d}$ and

$$\overline{z}^2 - z - (i-1) = i^2 + 2i\overline{d} + \overline{d}^2 + i - d - i + 1 = \overline{d}^2 + 2i\overline{d} - d.$$

In absolute value,

$$|\overline{z}^2 - z - (i-1)| = |\overline{d}^2 + 2i\overline{d} - d)| \le \delta^2 + 2\delta + \delta = \delta^2 + 3\delta$$

since d and \overline{d} have the same absolute value. So choosing $\delta < \min(\epsilon/6, 3)$ makes

$$\delta^2 + 3\delta < \epsilon/2 + \epsilon/2 = \epsilon.$$

3.

$$\lim_{z \to i} \frac{z^3 + i}{z - i} = -3$$

Solution: Set z = i + d; then since $(i + d)^3 = -i - 3d + 3id^2 + d^3$, we have

$$\frac{z^3 + i}{z - i} = \frac{-i - 3d + 3id^2 + d^3 + i}{i + d - i} = \frac{-3d + 3id^2 + d^3}{d} = -3 + 3id + d^2.$$

The distance from this point to -3 is

$$|-3+3id+d^2+3| = |3id+d^2| \le 3\delta + \delta^2.$$

We can make this distance smaller than ϵ by choosing $\delta < \min(\epsilon/6, 3)$. Then

$$3\delta + \delta^2 < 3(\epsilon/6) + 3 \cdot \epsilon/6 = \epsilon.$$