## MAT 342

Applied Complex Analysis
Midterm 2
April 12, 2007

## SOLUTIONS

1. (a) (12 points) Using the definition $e^{z}=e^{x} \cos y+i e^{x} \sin y$, where $z=x+i y$, show that the function $f(z)=e^{z}$ is analytic.

SOLUTION: It is enough, writing $e^{z}$ as $u(x, y)+i v(x, y)$, to check that $u$ and $v$ are differentiable and satisfy the Cauchy-Riemann equations. Here $u(x, y)=e^{x} \cos y$ and $v(x, y)=e^{x} \sin y . u_{x}=e^{x} \cos y=v_{y}$ and $u_{y}=-e^{x} \sin y=-v_{x}$.
(b) (12 points) Taking $e^{z}=e^{x} \cos y+i e^{x} \sin y$ as your definition, show that

$$
\frac{d}{d z} e^{z}=e^{z}
$$

SOLUTION: Using $f^{\prime}(z)=u_{x}+i v_{x}$, with $u_{x}=e^{x} \cos y$ and $v_{x}=e^{x} \sin y$ gives $(d / d z) e^{z}=$ $e^{x} \cos y+i e^{x} \sin y=e^{z}$.
2. (a) (14 points) Evaluate

$$
\int_{C} \frac{d z}{z^{2}+2 z+4}
$$

where $C$ is the circle of radius 2 about $2 i$, traversed counterclockwise.
SOLUTION: By the quadratic formula, the roots of $z^{2}+2 z+4$ are $z=-1 \pm i \sqrt{3}$. The root $-1+i \sqrt{3}$ is inside the contour. Write $z^{2}+2 z+4=(z+1+i \sqrt{3})(z+1-i \sqrt{3})$, and use $\frac{1}{(z+1+i \sqrt{3})}$ as your $f(z)$ and $(z+1-i \sqrt{3})$ as your $z-z_{0}$ in Cauchy's Integral Formula $\int_{C} \frac{f(z) d z}{z-z_{0}}=2 \pi i f\left(z_{0}\right)$. In this case $f\left(z_{0}\right)=\frac{1}{-1+i \sqrt{3}+1+i \sqrt{3}}=\frac{1}{2 i \sqrt{3}}$. The integral is then $2 \pi i f\left(z_{0}\right)=\frac{\pi}{\sqrt{3}}$.
(b) (12 points) Show that if $C_{R}$ is the semicircle $|z|=R, \Im(z) \geq 0(\Im(z)$ is the imaginary part of $z$ ), then

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{d z}{z^{2}+2 z+4}=0
$$

Hint: you may want to use the triangle inequality in the form $|a+b+c| \geq|a|-|b|-|c|$.

SOLUTION: We use the inequality $\left|\int_{C} f(z) d z\right| \leq M L$, where $L$ is the length of $C$ and $M$ is $\max _{z \in C}|f(z)|$. Using the triangle inequality as suggessted, we have

$$
\left|\frac{1}{z^{2}+2 z+4}\right| \leq \frac{1}{\left|z^{2}\right|-|2 z|-4}=\frac{1}{R^{2}-2 R-4}
$$

on the semicircle of radius $R$, so we can take this number as $M$. $L=\pi R$, so $M L=$ $\frac{\pi R}{R^{2}-2 R-4}$, and $\lim _{R \rightarrow \infty} M L=0$
(c) (14 points) Calculate $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+2 x+4}$. (If you can do this without complex analysis, that's fine too).

The easiest way to do this is to write

$$
\int_{-\infty}^{\infty} \frac{d x}{x^{2}+2 x+4}=\int_{-\infty}^{\infty} \frac{d z}{z^{2}+2 z+4}=\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{d z}{z^{2}+2 z+4}
$$

Now $\int_{-R}^{R} \frac{d z}{z^{2}+2 z+4}+\int_{C_{R}} \frac{d z}{z^{2}+2 z+4}$ is the integral around a contour containing the root $-1+i \sqrt{3}$ of the denominator, so as in part (a), the sum of those two integrals is $\frac{\pi}{\sqrt{3}}$, no matter what $R$ is. In the limit as $R \rightarrow \infty$ the first integral is $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+2 x+4}$ and the second integral is 0 .
This part could also be solved without complex analysis by completing the square and writing the denominator as $(z+1)^{2}+3$ Then the substitution $u=z+1$ leads to $\int_{-\infty}^{\infty} \frac{d u}{u^{2}+3}$. The substitution $u=v \sqrt{3}, d u=d v \sqrt{3}$ leads to

$$
\frac{\sqrt{3}}{3} \int_{-\infty}^{\infty} \frac{d v}{v^{2}+1}=\left.\frac{\sqrt{3}}{3} \arctan v\right|_{-\infty} ^{\infty}=\frac{\pi}{\sqrt{3}}
$$

3. (12 points) Evaluate $\int_{C} \frac{e^{3 z}}{z^{2}} d z$, where $C$ is the circle $|z|=1$, traversed counterclockwise.

SOLUTION: Here use Cauchy's Formula for $2 \pi i f^{\prime}\left(z_{0}\right)$, with $z_{0}=0$ and $f(z)=e^{3 z}$. In this case $f^{\prime}\left(z_{0}\right)=3 e^{0}=3$, so the integral is $6 \pi i$.
4. (a) (12 points) Show that

$$
\int_{C} \frac{d z}{z^{4}}=0
$$

where $C$ is the circle $|z|=1$, traversed counterclockwise, by direct calculation or by quoting an appropriate theorem.

SOLUTION: There were various ways of doing this, but you could NOT apply Cauchy's Theorem directly, because $\frac{1}{z^{4}}$ is not analytic at 0 . On the other hand $\frac{1}{z^{4}}$ is the derivative of $-1 / 3 z^{3}$, so its integral around any closed path is zero.
Alternately, you could do a direct calculation: parametrize the circle by $e^{i \theta}, 0 \leq \theta \leq 2 \pi$. Then $\frac{1}{z^{4}}=e^{-4 i \theta}$ and $d z=i e^{i \theta} d \theta$, so

$$
\int_{C} \frac{d z}{z^{4}}=\int_{0}^{2 \pi} i e^{-3 i \theta} d \theta=\left.(-1 / 3 i) i e^{-3 i \theta}\right|_{0} ^{2 \pi}=(-1 / 3)(1-1)=0 .
$$

And there were other ways.
(b) (12 points) Show that

$$
\int_{S} \frac{d z}{z^{4}}=0
$$

where $S$ is the boundary of a pentagon with vertices at $3 i, \pm 3, \pm 2-2 i$, by a method of your choice.

SOLUTION: If you used the "anti-derivative" argument for (a) you can use it again here. If you used the direct calculation, you need to remark that $\frac{1}{z^{4}}$ is analytic in the space between the pentagon and the circle, so the integrals are the same, namely 0 .

