
MAT 342
Applied Complex Analysis
Midterm 2
April 12, 2007

SOLUTIONS

1. (a) (12 points) Using the definition ez = ex cos y + iex sin y, where z = x + iy, show that the
function f(z) = ez is analytic.

SOLUTION: It is enough, writing ez as u(x, y) + iv(x, y), to check that u and v are
differentiable and satisfy the Cauchy-Riemann equations. Here u(x, y) = ex cos y and
v(x, y) = ex sin y. ux = ex cos y = vy and uy = −ex sin y = −vx.

(b) (12 points) Taking ez = ex cos y + iex sin y as your definition, show that

d

dz
ez = ez.

SOLUTION: Using f ′(z) = ux+ivx, with ux = ex cos y and vx = ex sin y gives (d/dz)ez =
ex cos y + iex sin y = ez.

2. (a) (14 points) Evaluate ∫
C

dz

z2 + 2z + 4

where C is the circle of radius 2 about 2i, traversed counterclockwise.

SOLUTION: By the quadratic formula, the roots of z2 + 2z + 4 are z = −1 ± i
√

3. The
root −1+ i

√
3 is inside the contour. Write z2 +2z +4 = (z +1+ i

√
3)(z +1− i

√
3), and

use 1
(z + 1 + i

√
3)

as your f(z) and (z + 1 − i
√

3) as your z − z0 in Cauchy’s Integral

Formula
∫

C

f(z) dz

z − z0

= 2πif(z0). In this case f(z0) = 1
−1 + i

√
3 + 1 + i

√
3

= 1
2i
√

3
. The

integral is then 2πif(z0) = π√
3
.

(b) (12 points) Show that if CR is the semicircle |z| = R, =(z) ≥ 0 ( =(z) is the imaginary
part of z), then

lim
R→∞

∫
CR

dz

z2 + 2z + 4
= 0.
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Hint: you may want to use the triangle inequality in the form |a + b + c| ≥ |a| − |b| − |c|.

SOLUTION: We use the inequality | ∫C f(z)dz| ≤ ML, where L is the length of C and
M is maxz∈C |f(z)|. Using the triangle inequality as suggessted, we have

| 1

z2 + 2z + 4
| ≤ 1

|z2| − |2z| − 4
=

1

R2 − 2R − 4

on the semicircle of radius R, so we can take this number as M . L = πR, so ML =
πR

R2 − 2R − 4
, and limR→∞ ML = 0

(c) (14 points) Calculate
∫

∞

−∞

dx

x2 + 2x + 4
. (If you can do this without complex analysis,

that’s fine too).

The easiest way to do this is to write
∫

∞

−∞

dx

x2 + 2x + 4
=

∫
∞

−∞

dz

z2 + 2z + 4
= lim

R→∞

∫ R

−R

dz

z2 + 2z + 4
.

Now
∫ R

−R

dz

z2 + 2z + 4
+

∫
CR

dz

z2 + 2z + 4
is the integral around a contour containing the

root −1 + i
√

3 of the denominator, so as in part (a), the sum of those two integrals is

π√
3
, no matter what R is. In the limit as R → ∞ the first integral is

∫
∞

−∞

dx

x2 + 2x + 4
and the second integral is 0.

This part could also be solved without complex analysis by completing the square and
writing the denominator as (z + 1)2 + 3 Then the substitution u = z + 1 leads to∫

∞

−∞

du

u2 + 3
. The substitution u = v

√
3, du = dv

√
3 leads to

√
3

3

∫
∞

−∞

dv

v2 + 1
=

√
3

3
arctan v|∞

−∞
=

π√
3
.

3. (12 points) Evaluate
∫

C

e3z

z2
dz, where C is the circle |z| = 1, traversed counterclockwise.

SOLUTION: Here use Cauchy’s Formula for 2πif ′(z0), with z0 = 0 and f(z) = e3z. In this
case f ′(z0) = 3e0 = 3, so the integral is 6πi.
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4. (a) (12 points) Show that ∫
C

dz

z4
= 0,

where C is the circle |z| = 1, traversed counterclockwise, by direct calculation or by
quoting an appropriate theorem.

SOLUTION: There were various ways of doing this, but you could NOT apply Cauchy’s

Theorem directly, because 1
z4 is not analytic at 0. On the other hand 1

z4 is the derivative

of −1/3z3, so its integral around any closed path is zero.

Alternately, you could do a direct calculation: parametrize the circle by eiθ, 0 ≤ θ ≤ 2π.

Then 1
z4 = e−4iθ and dz = ieiθ dθ, so

∫
C

dz

z4
=

∫
2π

0

ie−3iθ dθ = (−1/3i)ie−3iθ|2π
0

= (−1/3)(1 − 1) = 0.

And there were other ways.

(b) (12 points) Show that ∫
S

dz

z4
= 0,

where S is the boundary of a pentagon with vertices at 3i,±3,±2 − 2i, by a method of
your choice.

SOLUTION: If you used the “anti-derivative” argument for (a) you can use it again here.

If you used the direct calculation, you need to remark that 1
z4 is analytic in the space

between the pentagon and the circle, so the integrals are the same, namely 0.
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