
MAT 312/AMS 351 Spring 2012 Review for Final

(use the reviews for Midterms 1 and 2 plus the following)

§5.4 and “Notes on binary codes.” Understand that a binary code of length
n is a subset C of the abelian group Z2 × . . .Z2 (n times), also written as Bn

(sequences of length n of 0s and 1s; addition is vector addition: componentwise,
mod 2). The code C is linear if C is a subgroup of Bn. (Since mod 2 every
word is its own inverse, the condition amounts to C being closed under addition).
Understand the (Hamming) distance p.234 between codewords and for a linear
code know how to reckon the usefulness of a code (for error detection &/or
correction), i.e. the minimum distance netween codewords, by inspection of the
set of code-words p.237. [After p.237 switch to material in the “Notes.”]

Interpreting codewords as vectors, understand how a homomorphism (a lin-
ear transformation) h : Bn → Bm defines a linear code Ch by Ch = {x ∈
Bn|h(x) = 0}, the set of all n-tuples which h sends to the zero m-tuple in Bm.
(This is called the kernel of h). Understand how h can be represented by right-
multiplication by a matrix H: the m-vector h(x) is the matrix product xH; the
first row of H is the m-vector h(1, 0, 0, . . . , 0), the second row is h(0, 1, 0, . . . , 0),
etc.); we can call the code CH . Know how to deduce the error-detecting or
error-correcting properties of CH by inspection of the matrix H.

§6.1, 6.2 Understand the similarity between the divisibility of polynomials
s(x), t(x), . . . with coefficients in a field (the real numbers, Z2, etc.) and the
divisibility of integers. Be able to carry out the division algorithm (“long di-
vision”) for polynomials, giving a quotient and a remainder. Be able to carry
out the Euclidean Algorithm to calculate a greatest common divisor d(x) of
s(x), t(x) and to write d(x) as a polynomial linear combination of s(x) and t(x).
Note one difference: a polynomial p(x) has a linear factor (x− α) if and only if
p(α) = 0. This is very useful in finite fields, since there are only finitely many
possible α.

§6.3 Understand the definition of irreducible p.273; the distinction between
irreducible and prime is not important in this context. Understand the proof of
Theorem 6.3.4 (every polynomial can be written as a product of irreducibles)
and the difference from Theorem 1.3.3 (unique factorization for integers): an
irreducible factor is only determined up to a nonzero multiplicative constant.
When the coefficient field is Z2 this difference does not manifest itself since the
only nonzero constant is 1. Understand Examples 1 and 2 on p.277 completely.

§6.4 Understand that polynomial congruence classes are defined and have
many properties like congruence classes of integers mod m. In particular, un-
derstand that when a polynomial p(x) is irreducible, every nonzero congruence
class mod p(x) has a multiplicative inverse: Proposition 6.4.3, Example 2 p.281
and continuing in the Example on p.282. Understand the Example p.283 (im-
portant for §6.5): here p(x) = xn − 1, every equivalence class has a unique

1



representative a0 + a1x + · · · + an−1x
n−1; multiplying this class by the equiv-

alence class of the polynomial x gives an−1 + a0x + a1x
2 + · · · an−2x

n−1: the
coefficients have cycled.

§6.5 Understand the definition of cyclic code of length n: it’s a linear binary
code where a cyclic permutation of the bits in a word leads to another word of
the code. Understand the equivalence between the set of codewords and a set
of polynomials mod (xn − 1):

(a0, a1, . . . an−1) ↔ p(x) = a0 + a1x+ · · · an−1x
n−1

and that a cyclic permutation of the bits in the codeword corresponds to multi-
plication of the corresponding p(x) by a power of the linear polynomial x (mod

(xn − 1)).

Understand how then linearity of the code forces the product s(x)p(x) mod

(xn − 1), for any polynomial s(x) to also correspond to a codeword. [Remem-
ber, coefficients are Z2, so s(x)p(x) is a sum of polynomials of the form xip(x)].
Understand the proof of Proposition 6.5.2: every cyclic code of length n, in-
terpreted as a set of polynomials mod (xn − 1), has a generator g(x): every
polynomial in the code is a multiple of g(x) mod (xn − 1). Be able to apply
Corollary 6.5.3: such a g(x) must be a divisor of (xn − 1). Factoring (xn − 1)
gives all the possible g(x), and consequently all the possible cyclic codes of
length n.

Example. As in the text, consider cyclic codes of length 6. The generator
g(x) must be a divisor of (x6 − 1) = (x3 − 1)2 = (x − 1)2(x2 + x + 1)2. Take
g(x) = x2 + x+ 1. The codeword polynomials are multiples of g(x). Switching
now to the methods explained in the “Notes on binary codes,” we can generate
the code using the linear transformation h : B6 → B2 which assigns to each
6-tuple (polynomial of degree 5) its remainder after division by 1 + x + x2,
which will be a (polynomial of degree 1) 2-tuple. The corresponding matrix H
will have 6 rows; the rows will consist of the remainders of 1, x, x2, x3, x4, x5,
written as 2-tuples. Since

1 = 0(1 + x+ x2) + 1

x = 0(1 + x+ x2) + x

x2 = 1(1 + x+ x2) + 1 + x

x3 = (1 + x)(1 + x+ x2) + 1

x4 = (x+ x2)(1 + x+ x2) + x

x5 = (1 + x2 + x3)(1 + x+ x2) + 1 + x

2



the matrix is

H =

















1 0
0 1
1 1
1 0
0 1
1 1

















.

Since the matrix has only nonzero rows, but some of the rows are equal, this
code is suitable for single error detection but not for double error detection or
single error correction.

Taking instead g(x) = (x− 1)(x3− 1) = 1+x+x3+x4, the remainders now
have four coefficients:

1 = 0(1 + x+ x3 + x4) + 1

x = 0(1 + x+ x3 + x4) + x

x2 = 0(1 + x+ x3 + x4) + x2

x3 = 0(1 + x+ x3 + x4) + x3

x4 = 1(1 + x+ x3 + x4) + 1 + x+ x3

x5 = x(1 + x+ x3 + x4) + 1 + x2 + x3

giving the matrix

H =

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 1
1 0 1 1

















.

In this matrix there is no zero row, no two rows are equal, and no three rows
add up to zero. So the code CH is suitable for triple error detection or double
error detection and single error correction.

3


