MAT 312/AMS 351. Notes on binary codes: linear, error-detecting and correcting, efficient.
§1. A binary code C of length n is a subset of the set \mathbf{B}^{n} of all binary n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where $x_{i}=0$ or 1 .

The set \mathbf{B}^{n} forms a group under componentwise addition $\bmod 2$. (In this way it is isomorphic to $\mathbf{Z}_{2} \times \cdots \times \mathbf{Z}_{2}, n$ times). Moreover the scalar product $\mathbf{Z}_{2} \times \mathbf{B}^{n} \rightarrow$ \mathbf{B}^{n}, which takes $\left(0,\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$ to $(0,0, \ldots, 0)$ and $\left(1,\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$ to $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, makes \mathbf{B}^{n} into a \mathbf{Z}^{2}-vector space; the operations are exactly analogous to vector addition and scalar multiplication in \mathbf{R}^{n}.

The binary code C is called linear if it is a subgroup of \mathbf{B}^{n} (this is the same as requiring it to be a subspace of the vector space \mathbf{B}^{n}).

We define (as on p.234) the distance between two codewords c_{1} and c_{2} as the number of places in which they are different (this number can range from 0 to n). Then the minimum distance between different codewords in C measures the possibilities of C for error-detection and correction (Theorem 5.4.2); we'll call this number the quality of the code, and write it $Q(C)$.

If the code C is linear, then $Q(C)$ can be determined from inspection of the set of codewords: it is the smallest number of 1s (the "weight") of a non-zero codeword (Theorem 5.4.3).
§2. One way of defining a linear code (this presentation is different from the book's) is to consider a linear transformation $h: \mathbf{B}^{n} \rightarrow \mathbf{B}^{m}$ for some $m<n$ and to define $C=C_{H}$ as the "kernel" (or "null-space") of h; this is the set of all n-tuples $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ which h sends to the identity $\mathbf{0} \in \mathbf{B}^{m}$ $(\mathbf{0}=(0, \ldots, 0), m$ components $)$. In set notation, $C_{h}=\left\{\mathbf{x} \in \mathbf{B}^{n} \mid h(\mathbf{x})=\mathbf{0}\right\}$. (Note that in this context "linear transformation" means no more than the requirement $\left.h\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)=h\left(\mathbf{x}_{1}\right)+h\left(\mathbf{x}_{2}\right)\right)$.

The reason for defining a linear code this way is that when we express the linear transformation h by a matrix, useful information may be determined directly from that matrix, without a detailed examination of the set of codewords.

We will follow the convention of the book by representing n-tuples as row vectors, and representing h by a matrix acting on the right. Thus if $n=3, m=$ 2 , and h is the linear transformation: $h\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{1}+x_{3}, x_{1}+x_{2}+x_{3}\right)$. The corresponding matrix, with respect to the standard bases in \mathbf{B}^{3} and \mathbf{B}^{2} would be, with our convention of right action,

$$
H=\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right)
$$

since

$$
\left(x_{1}, x_{2}, x_{3}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right)=\left(x_{1}+x_{3}, x_{1}+x_{2}+x_{3}\right)
$$

§3. One useful type of transformation (matrix) is a canonical parity-check matrix. In this case, with m and n as above, H has the form of an $(n-m) \times m$ matrix A on top of an $m \times m$ identity matrix.

Example:

$$
n=6, \quad m=3, \quad A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right), \quad H=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

In this case, $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) H=\left(x_{1}+x_{3}+x_{4}, x_{1}+x_{2}+x_{5}, x_{2}+x_{6}\right)$. If we consider $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ as a word of the code defined by $\mathbf{x} H=\mathbf{0}$, we can interpret x_{4}, x_{5}, x_{6} as parity check bits: x_{4} should be 1 if the number of 1 s among x_{1} and x_{3} is odd; x_{5} should be 1 if the number of 1 s among x_{1} and x_{2} is odd; x_{6} should be 1 if x_{2} is 1 .
§4. Error-detection and correction. Note first (compare the examples above) that if $\mathbf{e}_{1}=(1,0, \ldots, 0)$ is the first standard basis vector for \mathbf{B}^{n}, then $\mathbf{e}_{1} H$ produces exactly the first row of H; similarly $\mathbf{e}_{2} H$ is the 2 nd row of H, etc. Now the collection $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ comprises all the words in \mathbf{B}^{n} with exactly one " 1 ". Consider the code C defined by $\mathbf{x} H=\mathbf{0}$. If H has no non-zero rows, then none of $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ can satisfy that equation. Consequently all the nonzero words of C have at least two " 1 "s. This argument proves:

Proposition 1. If the matrix H has no row with all zeros, then the code defined by $\mathbf{x} H=\mathbf{0}$ can be used for single-error detection.

Example: The code C defined by the 6×3 matrix H above can be listed by assigning arbitrary values to the bits numbered $1,2,3$ (we can think of these as information bits; then the values of bits $4,5,6$ are determined as explained above. There will therefore be eight words in C; it is convenient to list the information parts using the binary numbers for 0 to 7 , and then compute the check bits.

word no.	in binary	complete word
0	000	000000
1	001	001100
2	010	010011
3	011	011111
4	100	100110
5	101	101010
6	110	110101
7	111	111001

Proposition 2. If in the matrix H no row is zero and no two rows are equal, then the code defined by $\mathbf{x} H=\mathbf{0}$ can be used for single error correction.

Proof: We need to show that every nonzero code-word has at least three " 1 "s. We already know that since H has no zero row there cannot be a codeword with exactly one " 1 ". On the other hand, a codeword with exactly two " 1 "s would be of the form $\mathbf{e}_{i}+\mathbf{e}_{j}$, with $i \neq j$. (For example, (010100) $=\mathbf{e}_{2}+\mathbf{e}_{4}$). Applying H to such a word would give the sum of the like-numbered rows. (For example, with H above, $\left.(010100) H=\left(\mathbf{e}_{2}+\mathbf{e}_{4}\right) H=(011)+(100)=(111)\right)$. The product with H can only come out to be zero of those two rows add up to zero, i.e. if they are identical. So if no two rows of H are equal, then no word \mathbf{x} satisfying $\mathbf{x} H=\mathbf{0}$ can have exactly two " 1 "s. Since exactly one " 1 " has been excluded, a nonzero word must have at least three " 1 "s. Q.E.D.
§5. Efficiency. We would like to maximize the ratio of information bits to check bits and still have a code admitting single error correction. Suppose we have r ckeck bits; we can suppose our matrix H is in canonical parity-check matrix form, so the bottom r rows are $\mathbf{e}_{1}, \ldots, \mathbf{e}_{r}$. There are 2^{r} possible length r binary numbers, running from $(0,0, \ldots, 0)$ to $(1,1, \ldots 1)$. As extra rows in our matrix we must exclude $(0,0, \ldots, 0)$ as well as the rows $\mathbf{e}_{1}, \ldots, \mathbf{e}_{r}$ we used at the bottom. This leaves $2^{r}-1-r$ possiblities; each one corresponds to a possible information bit. To maximize efficiency, we use them all. For example,

$$
H=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

has 3 check-bits and $2^{3}-1-3=4$ information bits. Such a code is called a perfect code; it can be shown to be the most efficient way of encoding 2^{4} symbols
with single error detection. Similarly

$$
H=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

has 4 check-bits and $2^{4}-1-4=11$ information bits; it is also a perfect code; the most efficient way of encoding 2^{11} symbols with single error detection.
$\S 6$. Hamming codes. Suppose \mathbf{x} is a codeword in the perfect code C defined as above by a matrix H. A transmission error in the i-th position means that a 0 has been changed to a 1 or vice-versa; in either case, the transmitted word is $\mathbf{x}+\mathbf{e}_{i}$. Applying H to the transmitted word gives $H(\mathbf{x})+H\left(\mathbf{e}_{i}\right)=\mathbf{0}+H\left(\mathbf{e}_{i}\right)=$ the i th row of H. In the matrix defining a perfect code with r check bits, each binary number between 1 and r appears as a row. If the rows of H are rearranged so that the i th row is exactly the binary number i, and that new matrix is used to define the code, then the result of applying H to a transmitted word will be either $\mathbf{0}$ (if there was no error) or the binary number of the bit where the error occurred.

Example ($r=3$).

$$
H=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

Here the check-bits are in position 1, 2, 4. The 16 words of the code can be efficiently generated by using (0000) up to (1111) for the information bits $x_{3}, x_{5}, x_{6}, x_{7}$ and adjusting the check bits accordingly: $x_{1}=x_{3}+x_{5}+x_{7}$, $x_{2}=x_{3}+x_{6}+x_{7}, x_{4}=x_{5}+x_{6}+x_{7}$.

word no.	in binary	complete word
0	0000	0000000
1	0001	1101001
2	0010	0101010
3	0011	1000011
4	0100	1001100
5	0101	0100101
6	0110	1100110
7	0111	0001111
8	1000	1110000
9	1001	0011001
10	1010	1011010
11	1011	0110011
12	1100	0111100
13	1101	1010101
14	1110	0010110
15	1111	1111111

(Here the checkbits are shown in italic). This is a Hamming code.
Suppose that word number $6, \mathbf{x}=(1100110)$, was transmitted with an error in bit 5 , so as $\mathbf{x}^{\prime}=(1100010)$. Applying H to the transmitted word gives $\mathbf{x}^{\prime} H=(101)$, signalling an error in position 5 . The word can then be corrected by adding (0000100) to \mathbf{x}^{\prime}. Thus the Hamming code doesn't just allow a single error to be corrected; it shows you immediately how to do it.

Exercises:

1. Consider the code C_{H} defined by $\mathbf{x} H=0$ for this matrix H :

$$
H=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

List the eight codewords of C_{H}. (I.e., give all the solutions of $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) H=$ $0)$. Give an example of a single error, in the transmission of one of the codewords of C_{H}, which cannot be detected.
2. Consider the code C_{H} defined by $\mathbf{x} H=0$ for this matrix H :

$$
H=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

List the eight codewords of C_{H}. (I.e., give all the solutions of $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) H=$ $0)$. Give an example of a single error, in the transmission of one of the codewords of C_{H}, that cannot be corrected.
3. Suppose the Hamming code of $\S 6$ is used to transmit text, by assigning A to word $0, \mathrm{~B}$ to word $1, \ldots, \mathrm{P}$ to word 15 , following alphabetical order. An 8-letter message is encoded and transmitted. What is received is
01011000010110001010010101011001001100110100100000111101.

Assuming that each codeword has been transmitted with at most a single error, reconstruct the original message.

Anthony Phillips
April 10, 2012

