MAT 312/AMS 351
 Applied Abstract Algebra
 Midterm 1 - Solutions

1. (a) Calculate the multiplicative inverse of $11 \bmod 173$.

Apply the Euclidean Algorithm:

$$
\begin{gathered}
173=15 \times 11+8 \\
11=1 \times 8+3 \\
8=2 \times 3+2 \\
3=1 \times 2+1
\end{gathered}
$$

and now backwards, since $(173,11)=1$:

$$
\begin{gathered}
1=3-2 \\
1=3-(8-2 \times 3)=-8+3 \times 3 \\
1=-8+3(11-1 \times 8)=3 \times 11-4 \times 8 \\
1=3 \times 11-4(173-15 \times 11)=63 \times 11-4 \times 173
\end{gathered}
$$

so the answer is 63 .
(b) Solve $11 x \equiv 15 \bmod 173$.

Multiply the equation by the inverse of 11 :

$$
\begin{gathered}
63 \times 11 x \equiv 63 \times 15 \bmod 173 \\
x \equiv 945 \equiv 80 \bmod 173
\end{gathered}
$$

2. (30 points)
(a) Find the greatest common divisor d of 935 and 272 .

Euclidean algorithm:

$$
\begin{gathered}
935=3 \times 272+119 \\
272=2 \times 119+34 \\
119=3 \times 34+17 \\
34=2 \times 17
\end{gathered}
$$

so $(935,272)=17$
(b) Express d as an integral linear combination: $d=s \cdot 935+t \cdot 272$. run the algorithm backwards:

$$
\begin{gathered}
17=119-3 \times 34 \\
17=119-3(272-2 \times 119)=-3 \times 272+7 \times 119 \\
17=-3 \times 272+7(935-3 \times 272)=-24 \times 272+7 \times 935
\end{gathered}
$$

(c) Solve $272 x \equiv 34 \bmod 935$.

The equations has solutions because 34 is a multiple of $(935,272)=17$.
First divide through by 17 and solve

$$
16 x \equiv 2 \bmod 55
$$

The inverse of $16 \bmod 55$ is 31 ; this number satisfies $16 \times 31 \equiv 1 \bmod 55$ so $2 \times 31=62$ satisfies $16 \times 62 \equiv 2 \bmod 55$; this can be simplified to $7=62-55$:

$$
16 \times 7=112 \equiv 2 \bmod 55
$$

Now multiplying by 17 gives a solution to our original equation:

$$
16 \times 17 \times 7 \equiv 2 \times 17 \bmod 55 \times 17
$$

or

$$
272 \times 7 \equiv 34 \bmod 935
$$

There are 16 other solutions:

$$
7+55,7+2 \times 55, \ldots, 7+16 \times 55
$$

since these numbers are all different $\bmod 935=17 \times 55$, and

$$
272 \times(7+k \times 55) \equiv 34+k \times 272 \times 55 \equiv 34+k \times 16 \times 17 \times 55 \equiv 34+16 k \times 935 \equiv 34 \bmod 935
$$

3. (20 points) Prove (by induction, or otherwise) that

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

i.e. that the sum of the first n odd numbers is equal to n^{2}.

Let $P(n)$ be the statement $1+3+5+\cdots+(2 n-1)=n^{2}$.
$P(1)$ is true, since $1=1$.
We show $P(k) \Rightarrow P(k+1)$ for $k \geq 1$. By induction, this completes the proof.
Start with $P(k)$:

$$
1+3+5+\cdots+(2 k-1)=k^{2}
$$

add $2 k+1$ to both sides

$$
1+3+5+\cdots+(2 k-1)+(2 k+1)=k^{2}+2 k+1=(k+1)^{2}
$$

which is $P(k+1)$.
4. (10 points) Give numbers a and b such that 15 divides $a b$ but does not divide either a or b.

Simplest example: $a=3, b=5$.
5. (20 points) Solve the system

$$
\begin{aligned}
& x \equiv 4 \bmod 17 \\
& x \equiv 1 \bmod 13
\end{aligned}
$$

The moduli are relatively prime, so we can always find solutions. First write $1=$ $s \times 17+t \times 13:$

$$
\begin{gathered}
17=13+4 \\
13=3 \times 4+1
\end{gathered}
$$

so

$$
1=13-3 \times 4=13-3 \times(17-13)=4 \times 13-3 \times 17
$$

which means

$$
4 \times 13 \equiv 1 \bmod 17, \quad(-3) \times 17 \equiv 1 \bmod 13
$$

Then notice that

$$
1 \times[(-3) \times 17]+4 \times[4 \times 13]
$$

is a solution of both equations. This number is $16 \times 13-3 \times 17=157$. Any other solution comes from adding to 157 a multiple of 13×17.

