MAT 312 Spring 2009 Homework 12

1. Find $q(x)$ and $r(x)$ in $\mathbf{Z}(X)$ to satisfy

$$
x^{4}-5 x^{3}+3 x^{2}+x=\left(x^{2}+1\right) q(x)+r(x)
$$

with degree $(r)<2$.
2. Prove that in $\mathbf{Z}_{\mathbf{2}}(X)$ the polynomial $x^{2}+x+1$ is irreducible (cannot be factored as a product of two linear polynomials).
3. In $\mathbf{Z}(X)$ calculate the greatest common divisor $d(x)$ of $a(x)=x^{4}-$ $5 x^{3}+3 x^{2}-5 x+2$ and $b(x)=x^{5}+x^{4}+2 x^{3}+2 x^{2}+x+1$. Then use the Euclidean algorithm to find polynomials $h(x)$ and $k(x)$ such that $d(x)=h(x) a(x)+k(x) b(x)$.
4. Let $\omega=e^{\pi i / 16}$. Then ω is a primitive 32 -nd root of 1 . Show how the 32 factors

$$
(x-1)(x-\omega)\left(x-\omega^{2}\right) \cdots\left(x-\omega^{31}\right)
$$

can be grouped two by two to give a product of 16 quadratic factors; show that these can be grouped two by two to give a product of 8 degree-4 factors; continue through three more steps to get $x^{32}-1$.

