Using $\omega=e^{i \frac{\pi}{4}}$ as your primitive 8 -th root of 1 , compute the Discrete Fourier Transforms $\mathbf{c}=\left(c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}\right)$ of the following vectors. In each case, calculate also the vector of absolute values $\left(\left|c_{0}\right|,\left|c_{1}\right|,\left|c_{2}\right|,\left|c_{3}\right|,\left|c_{4}\right|\right.$, $\left.\left|c_{5}\right|,\left|c_{6}\right|,\left|c_{7}\right|\right)$.

1. $\mathbf{f}=(-1,-1,1,1,1,1,-1,-1)$
2. $\mathbf{f}=(-1,-1,1,1,-1,-1,1,1)$
3. $\mathbf{f}=(-1,1,-1,1,-1,1,-1,1)$

It will be easiest to work with the matrix $\Omega=\left(\omega^{m j}\right)$ (see p. 445) keeping the entries as powers of ω, so as to be able to use the identities $\omega^{4}=-1$, $\omega^{5}=-\omega, \omega^{6}=-\omega^{2}, \omega^{7}=-\omega^{3}$ to simplify the expression for c_{i} before evaluating the sum using $\omega=\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}$, etc.

