
Section 9.1

2) a) 42 = 1 · 30 + 12. 30 = 2 · 12 + 6. 12 = 2 · 6 + 0. gcd(42, 30) = 6.

b) 90 = 2 · 39 + 12. 39 = 3 · 12 + 3. 12 = 4 · 3 + 0. gcd(90, 39) = 3.

c) 153 = 1 ·143+10. 143 = 14 ·10+3. 10 = 3 ·3+1. 3 = 3 ·1+0. gcd(143, 153) = 1.

3) a) 6 = 30− 2 · 12 = 30− 2(42− 30) = 3(30)− 2(42).

b) 3 = 39− 3 · 12 = 39− 3(90− 2 · 39) = 7(39)− 3(90).

c) 1 = 10−3 ·3 = 10−3(143−14 ·10) = 43(10)−3(143) = 43(153−143)−3(143) =
43(153)− 46(143).

4) a) In Z7, (3 + 5)(6 + 4) + 6 = (1)(3) + 6 = 3 + 6 = 2

b) In Z6, (24 · 32) + (24 · 5) = (4 · 3) + (4 · 5) = 0 + 2 = 2.

5) a) 11x = 1 implies 11x + 24y = 1. We use the Euclidean Algorithm. 24 = 2 · 11 + 2.
11 = 5 · 2 + 1. So

1 = 11− 5 · 2 = 11− 5(24− 2 · 11) = 11(11)− 5(24)

We see x = 11.

b) 41x = 1 implies 41x+77y = 1. We use the Euclidean Algorithm. 77 = 1 ·41+36.
41 = 1 · 36 + 5. 36 = 7 · 5 + 1. So

1 = 36− 7 · 5 = 8(36)− 7(41) = 8(77)− 15(41)

We see x = −15, which in Z77, is equivalent to 62.

8)

q1b + r1 = q2b + r2

(q1 − q2)b = r2 − r1

Since 0 ≤ r1 ≤ r2 < b, we see that 0 ≤ r2 − r1 < b. However, we have just seen that
r2− r1 is a multiple of b. This forces r2− r1 = 0. So r1 = r2. Therefore, (q1− q2)b = 0,
so q1 = q2 as well.

9) k · a = 0 in Zn means that n divides k · a. Since g = gcd(n, a), g divides both n and
a. Therefore, k · a = n

g
· a = n·a

g
= n · a

g
, and a

g
is an integer. Thus, n divides k · a as

desired. Now suppose that a · x = 1 in Zn for some x. Then in Zn

k = k · (a · x) = (k · a) · x = 0 · x = 0.

But 0 < k < n, so k 6= 0 in Zn. Contradiction. a · x = 1 has no solution.

10) Let p be prime and a be an arbitrary positive integer. gcd(p, a) is a divisor of p, and
so is either 1 or p. If it is 1, we are done. If it is p, then since gcd(p, a) is also a divisor
of a, we see p|a.
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11) 1 = gcd(a, c). So there exist integers x, y such that ax + cy = 1. Thus, abx + cby = b.
Since c|ab, cn = ab for some integer n, and so b = cnx + cby = c(nx + by). Therefore,
c|b.

12) Let a, b, and p be positive integers with p prime and p|ab. By Problem 10, either p|a
or gcd(p, a) = 1. By Problem 11, if gcd(p, a) = 1, then p|b. Therefore, either p|a or p|b.

13) Suppose that n has two factorizations into primes. pr1
1 · · · p

rk
k = n = qs1

1 · · · q
sl
l , where

p1, . . . , pk are distinct primes, q1, . . . , ql are distinct primes, and r1 . . . , rk, s1, . . . , sl are
positive integers. For all 1 ≤ i ≤ k, pi divides n = qs1

1 · · · q
sl
l , and so by Problem 12, pi

must divide one of the factors qj on the right-hand side. Therefore, since qj is prime,
pi = qj. Therefore, each pi is one of the qj’s. Reversing the argument shows that each
qj is one of the pi’s. In other words, the list of pi’s and qj’s are the same. Therefore,
k = l, and we can assume p1 = q1, p2 = q2, etc.

So pr1
1 · · · p

rk
k = n = ps1

1 · · · p
sk
k . We need to show that ri = si for each i. Suppose

for contradiction, that r1 < s1. Then pr2
2 · · · p

rk
k = ps1−r1

1 ps2
2 · · · p

sk
k . s1 − r1 ≥ 1, so

p1 divides the right-hand side, but does not divide the left-hand side. Contradiction.
Therefore, r1 = s1. Similarly, ri = si for each i. Thus, the factorization is unique.

Section 9.2

1) a) 3x2 + 5

b) 2x + 3

c) 2x2 + 4x

d) x + 3

2a) 2x3 + x2 − 9 = (2x− 5)(x2 + 3x) + (15x− 9).

3a) x3 + x2 + 1 = (x)(x2 + x + 1) + (x + 1).

4a) 2x2 + 3x + 4 = (3x + 3)(3x + 5) + (3).

9) a) max(−∞, n) = n makes sense because −∞ should be smaller than any number.
The notation of −∞+n = −∞ makes sense if you consider a generalization of the
statement for continuous functions limx→c(a(x)+b(x)) = limx→c a(x)+limx→c b(x).
Indeed, if we say limx→−∞(x + n) = (limx→−∞ x) + n, we arrive at the desired
equation.

b) If q(x) = 0, then p(x)q(x) = 0 no matter what p is. therefore, deg(p(x)q(x)) =
deg(0) = −∞, and deg(p(x)) + deg(q(x)) = deg(p(x) + −∞ = −∞, so the
statement holds.

c) If q(x) is the zero polynomial, then deg(p(x) + q(x)) = deg(p(x), and
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max(deg(p(x)), deg(q(x))) = max(deg(p(x)),−∞) = deg(p(x)). Similarly, we get
equality if p(x) is zero. Finally, we need to consider the case where neither p or q
are identically 0. Let n = deg p(x) and m = deg q(x).

p(x) = anx
n + . . . + a0

q(x) = bmxm + . . . + b0

where an and bn are nonzero. If n > m, then anx
n is the leading term in p(x) +

q(x). Therefore, deg(p(x) + q(x)) = n = max(n, m) = max(deg(p(x)), deg(q(x))).
Similarly, if m > n, then deg(p(x) + q(x)) = m = max(deg(p(x)), deg(q(x))).
Finally, if m = n, then the leading term of p(x) + q(x) is (an + bn)xn unless
an + bn = 0. If this is the case, then the degree can only decrease. Therefore,
deg(p(x) + q(x)) ≤ n = max(deg(p(x)), deg(q(x))).
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