Section 3.2

1) a) $a \sim b$ is true because $b=a \circ c$.
b) $a \sim c$ is false.
c) $b \sim e$ is false.
d) $b \sim c$ is false.
2) The left cosets of H are as follows:

$$
\begin{aligned}
(0,0)+H & =\{(0,0),(1,2)\} \\
(0,1)+H & =\{(0,1),(1,3)\} \\
(0,2)+H & =\{(0,2),(1,0)\} \\
(0,3)+H & =\{(0,3),(1,1)\}
\end{aligned}
$$

6) By definition, $x \sim y$ if and only if $y=x \circ h$ for some $h \in H$. But this happens if and only if $x^{-1} \circ y=x^{-1} \circ(x \circ h)=\left(x^{-1} \circ x\right) \circ h=e \circ h=h$ for some $h \in H$. Therefore, $x \sim y \Longleftrightarrow x^{-1} \circ y \in H$.
7) For each part, we only need to compute $x^{-1} \circ y$ and check if it is in H.
a) $(41)(1342)=(13)(24) \in H$. Yes.
b) $(321)(234)=(134) \notin H$. No.
c) $(43)(21)(23)=(1243) \notin H$. No.
d) $(41)(123)=(1234) \in H$. Yes.
8) a) For a group G and a subgroup H, the right coset of an element $x \in G$ is defined by $H x=\{h \circ x \mid h \in H\}$.
b) We can define the equivalence relation by $x \sim y$ if and only if $y=h \circ x$ for some $h \in H$.
c) The right coset decomposition is

$$
S_{3}=\{e,(12)\} \cup\{(13),(132)\} \cup\{(23),(123)\}
$$

d) No.
12) We know that a code word from H has been transmitted, and the word g has been received. Therefore, if h is transmitted, then the error that occurs is $g-h$, which is the same as $g+h$ in $\left(\mathbb{Z}_{2}\right)^{n}$. Therefore, the set of possible errors that could have occurred is $\{g+h \mid h \in H\}=g+H$. The most likely errors are the ones of smallest weight; i.e. the coset leaders.

Section 3.3

1) a) $X_{e}=\{1,2,3\} ; X_{(12)}=\{3\} ; X_{(13)}=\{2\} ; X_{(23)}=\{1\} ; X_{(123)}=X_{(132)}=\emptyset$.
$G_{1}=\{e,(23)\} ; G_{2}=\{e,(13)\} ; G_{3}=\{e,(12)\}$.
b) $X_{e}=\{1,2,3,4,5,6\} ; X_{(12)}=\{3,4,5,6\} ; X_{(345)}=X_{(354)}=\{1,2,6\} ; X_{(12)(345)}=$ $X_{(12)(354)}=\{6\}$.
$G_{1}=G_{2}=\{e,(345),(354)\} ; G_{3}=G_{4}=G_{5}=\{e,(12)\} ;$
$G_{6}=\{e,(12),(345),(354),(12)(345),(12)(354)\}$.
2) a) i) The only equivalence class is $X=\{1,2,3\}$.
ii) For any $x,|[x]|=3$, and $\left|G_{x}\right|=2$. Therefore, $|G|=6=3 \cdot 2$ checks.
b) i) The equivalence class decomposition is $X=\{1,2\} \cup\{3,4,5\} \cup\{6\}$.
ii) For $x \in\{1,2\},|[x]|=2$ and $\left|G_{x}\right|=3$. For $x \in\{3,4,5\},|[x]|=3$ and $\left|G_{x}\right|=2$. For $x=6,|[x]|=1$ and $\left|G_{x}\right|=6$. In any case, $|[x]|\left|G_{x}\right|=6=|G|$, as desired.
