Section 2.4

1) a) h_3 b) h_7 c) h_2 d) h_5 2) a) $h_3 \circ h_8 = h_7$; $(h_3 \circ h_8)^{-1} = h_7^{-1} = h_7$. $h_3^{-1} = h_3$; $h_8^{-1} = h_8$; $h_8^{-1} \circ h_3^{-1} = h_8 \circ h_3 = h_7$. c) 2 + 3 = 5; -(2 + 3) = -5 = 1. -2 = 4; -3 = 3; -3 + -2 = 3 + 4 = 1. 3d) $(a^{-1} \circ b^{-1}) \circ (c^{-1} \circ a)^{-1} \circ c^{-1} = a^{-1} \circ b^{-1} \circ a^{-1} \circ c \circ c^{-1} = a^{-1} \circ b^{-1} \circ a^{-1}$. 5) $x \circ a = b$ $(x \circ a) \circ a^{-1} = b \circ a^{-1}$ compose both sides with a^{-1} $x \circ (a \circ a^{-1}) = b \circ a^{-1}$ associativity of the group operation $x \circ e = b \circ a^{-1}$ definition of a^{-1} $x = b \circ a^{-1}$ definition of identity

- 7) $(a \circ b) \circ f = e \circ f = a$, while $a \circ (b \circ f) = a \circ e = f$, and so the axiom of associativity fails. However, the conclusion of Theorem 2.8 still holds since every element of the set appears exactly once in each row and column.
- 9)

 $\begin{array}{rcl} x \circ a &=& y \circ a \\ (x \circ a) \circ a^{-1} &=& (y \circ a) \circ a^{-1} & \text{compose both sides with } a^{-1} \\ x \circ (a \circ a^{-1}) &=& y \circ (a \circ a^{-1}) & \text{associativity of the group operation} \\ x \circ e &=& y \circ e & \text{definition of } a^{-1} \\ x &=& y & \text{definition of identity} \end{array}$

10) Left Cancellation Law: Let (G, \circ) be a group. Let x, y, and a be group elements such that $a \circ x = a \circ y$. Then x = y.

 $\begin{array}{rcl} a \circ x &=& a \circ y \\ a^{-1} \circ (a \circ x) &=& a^{-1} \circ (a \circ y) & \text{compose both sides with } a^{-1} \\ (a^{-1} \circ a) \circ x &=& (a^{-1} \circ a) \circ y & \text{associativity of the group operation} \\ e \circ x &=& e \circ y & \text{definition of } a^{-1} \\ x &=& y & \text{definition of identity} \end{array}$

12) Let (G, \circ) be a group with two elements. Let us denote the elements by e and a, where e is the identity. We know that $e \circ e = e$, $e \circ a = a$ and $a \circ e = a$. Thus, in order for G to be a group, we must have $a \circ a = e$. In other words, the composition table must be the following:

$$\begin{array}{c|cc} \circ & e & a \\ \hline e & e & a \\ a & a & e \end{array}$$

Therefore, every two element group is isomorphic, with the isomorphism determined by identifying the identities with each other and identifying the nonidentity elements with each other.

Section 2.5

- 1) a) No, for instance 1 + 3 = 4.
 - b) Yes.
 - c) No, for instance $h_2 \circ h_3 = h_4$.
 - d) Yes
- a) No; the subset is not closed under the operation: (1,2) + (1,2) = (0,1).
 b) Yes.
- **3)** a) The order of 1 in \mathbb{Z}_6 is 6. $\langle 1 \rangle = \{0, 1, 2, 3, 4, 5\}.$
 - c) The order of 3 in \mathbb{Z}_6 is 2. $\langle 3 \rangle = \{0, 3\}$.
 - e) The order of 0 in \mathbb{Z}_4 is 1. $\langle 0 \rangle = \{0\}$.
 - g) The order of h_5 in Table 2.1 is 2. $\langle h_5 \rangle = \{h_1, h_5\}$.
- 7) $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not a cyclic group because all of its elements is its own inverse. Therefore, any non-identity element has order 2. It cannot generate all 4 elements of $\mathbb{Z}_2 \times \mathbb{Z}_2$ as a cyclic subgroup.
- 8) If H is a subgroup of G that contains g, then H must also contain g^2 , g^3 , etc, because H is closed under the group operation of G. Furthermore, H contains inverses, so it must contain g^{-1} , g^{-2} , g^{-3} , etc. We know that it must contain the identity, as well. In summary, $g^n \in H$ for any integer n. Therefore, $\langle g \rangle \subseteq H$, and it is in this sense that $\langle g \rangle$ is the smallest subgroup containing g.
- 10) For K to be a subgroup of H, it means that K is a group under the composition law of H. But this is the same composition law in G because H is a subgroup of G. Therefore, K is a group under the composition law of G; i.e. a subgroup of G.
- 11) First, we show that $H \cap K$ is closed under \circ . Let a and b be arbitrary elements in $H \cap K$. Then $a, b \in H$ and $a, b \in K$. Since H and K are both subgroups, they are closed under \circ , so that $a \circ b \in H$ and $a \circ b \in K$. Therefore, $a \circ b \in H \cap K$, and $H \cap K$ is closed under \circ .

According to Theorem 2.10, the only other condition we must meet is that $H \cap K$ is closed under inversion. Let $s \in H \cap K$. We must show that $s^{-1} \in H \cap K$. But $s \in H$ and $s \in K$, and since they are both subgroups, we have $s^{-1} \in H$ and $s^{-1} \in K$. This yields the desired conclusion.

12a) $\langle 2 \rangle = \{0, 2, 4\}$, and $\langle 3 \rangle = \{0, 3\}$. It is clear that $\langle 2 \rangle \cup \langle 3 \rangle = \{0, 2, 3, 4\}$ is not a subgroup of \mathbb{Z}_6 since it is not closed under addition: 2 + 3 = 5.