Section 1.3

1. a. $(1100)+(0110)=(1010)$
c. $(00010)+(10110)+(11011)=(01111)$

4c.

+	(00000)	(01110)	(10111)	(11001)
(00000)	(00000)	(01110)	(10111)	(11001)
(01110)	(01110)	(00000)	(11001)	(10110)
(10111)	(10111)	(11001)	(00000)	(01110)
(11001)	(11001)	(10111)	(01110)	(00000)

This may be the set of code words for a group code since the set is closed under addition.
5. The set $\{(0011),(1001),(0100),(1101)\}$ cannot form a group code because it does not include (0000).
7. The code words of Example 1.28 can be used for a single-error correcting code using the minimum-likelihood decoding scheme because $d=3$; Theorem 1.3 applies.
10. Take, for instance, the code words (000), (110), (111). Then d^{\prime}, the minimum weight of non-zero code words, is 2 . However, $H((110),(111))=$ 1 , so $d=1$.

Section 1.4

2b. $(1,-2,4,0) \cdot(0,-3,-2,1)=1 \cdot 0+(-2) \cdot(-3)+4 \cdot(-2)+0 \cdot 1=6-8=-2$
3. b. $(10001) \cdot(11100)=1 \cdot 1+0 \cdot 1+0 \cdot 1+0 \cdot 0+1 \cdot 0=1$
d. $(110000) \cdot(000011)=1 \cdot 0+1 \cdot 0+0 \cdot 0+0 \cdot 0+0 \cdot 1+0 \cdot 1=0$
4. b.

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)=\binom{1}{1}
$$

d.

$$
\left(\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

6. $B+C=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$. So

$$
\begin{gathered}
(B+C) \cdot A=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
B \cdot A=\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \\
C \cdot A=\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1
\end{array}\right)
\end{gathered}
$$

Therefore, $B \cdot A+C \cdot A=\left(\begin{array}{ll}1 & 1\end{array}\right)$.
9. The weights of the nonzero code words are as follows:

(0100101)	3
(1000011)	3
(1100110)	4
(0001111)	4
(0101010)	3
(1001100)	3
(1101001)	4
(0010110)	3
(0110011)	4
(1010101)	4
(1110000)	3

(0011001)	3
(0111100)	4
(1011010)	4
(1111111)	7

Since this is a group code, the d is the smallest weight: 3 .
10b.

$$
\left(\begin{array}{ccccc}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5}
\end{array}\right)=\left(\begin{array}{c}
c_{2}+c_{3} \\
c_{1}+c_{4} \\
c_{1}+c_{2}+c_{5}
\end{array}\right)
$$

Therefore, c_{3} is a parity check for c_{2}, c_{4} is a parity check for c_{1}, and c_{5} is a parity check for c_{1} and c_{2}. The null space consists of $\{(00000),(10011),(01101),(11110)\}$. The smallest non-zero weight is 3 , and since this is a group code, $d=3$.
17. a.

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right)=\binom{c_{1}+c_{2}+c_{3}}{c_{2}+c_{4}}
$$

Thus c_{3} is a parity check for c_{1} and c_{2}, and c_{4} is a parity check for just c_{2}. The null space is $\{(0000),(1010),(0111),(1101)\}$.

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right)=\binom{c_{2}+c_{4}}{c_{1}+c_{3}+c_{4}}
$$

Here, c_{2} is a parity check for c_{4}, and c_{1} is a parity check for c_{3} and c_{4}. The null space is $\{(0000),(1101),(1010),(0111)\}$. The null spaces do indeed coincide.
b. Each row of a matrix yields a specific equation that determines the null space. Interchanging rows only interchanges these equations; it does not change the equations. Hence, it does not change the null space.

