Section 1.3

1. a.
$$(1100) + (0110) = (1010)$$

c. (00010) + (10110) + (11011) = (01111)

4c.

+	(00000)	(01110)	(10111)	(11001)
(00000)	(00000)	(01110)	(10111)	(11001)
(01110)	(01110)	(00000)	(11001)	(10110)
(10111)	(10111)	(11001)	(00000)	(01110)
(11001)	(11001)	(10111)	(01110)	(00000)

This may be the set of code words for a group code since the set is closed under addition.

- The set {(0011), (1001), (0100), (1101)} cannot form a group code because it does not include (0000).
- 7. The code words of Example 1.28 can be used for a single-error correcting code using the minimum-likelihood decoding scheme because d = 3; Theorem 1.3 applies.
- 10. Take, for instance, the code words (000), (110), (111). Then d', the minimum weight of non-zero code words, is 2. However, H((110), (111)) = 1, so d = 1.

Section 1.4

2b. $(1, -2, 4, 0) \cdot (0, -3, -2, 1) = 1 \cdot 0 + (-2) \cdot (-3) + 4 \cdot (-2) + 0 \cdot 1 = 6 - 8 = -2$ **3.** b. $(10001) \cdot (11100) = 1 \cdot 1 + 0 \cdot 1 + 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 = 1$

d. $(110000) \cdot (000011) = 1 \cdot 0 + 1 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 + 0 \cdot 1 = 0$

4. b.

$$\left(\begin{array}{rrrr} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{array}\right) \cdot \left(\begin{array}{r} 1 \\ 0 \\ 0 \\ 1 \end{array}\right) = \left(\begin{array}{r} 1 \\ 1 \end{array}\right)$$

d.

$$\begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

6. $B + C = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$. So

$$(B+C) \cdot A = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \end{pmatrix}$$
$$B \cdot A = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \end{pmatrix}$$
$$C \cdot A = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

Therefore, $B \cdot A + C \cdot A = \begin{pmatrix} 1 & 1 \end{pmatrix}$.

9. The weights of the nonzero code words are as follows:

$$\begin{array}{cccc} (0100101) & 3 \\ (1000011) & 3 \\ (1100110) & 4 \\ (0001111) & 4 \\ (0101010) & 3 \\ (1001100) & 3 \\ (1101001) & 4 \\ (0010110) & 3 \\ (0110011) & 4 \\ (10100101) & 4 \\ (1110000) & 3 \end{array}$$

 $\begin{array}{ccc} (0011001) & 3 \\ (0111100) & 4 \\ (1011010) & 4 \\ (1111111) & 7 \end{array}$

Since this is a group code, the d is the smallest weight: 3.

10b.

$$\begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{pmatrix} = \begin{pmatrix} c_2 + c_3 \\ c_1 + c_4 \\ c_1 + c_2 + c_5 \end{pmatrix}$$

Therefore, c_3 is a parity check for c_2 , c_4 is a parity check for c_1 , and c_5 is a parity check for c_1 and c_2 . The null space consists of $\{(00000), (10011), (01101), (11110)\}$. The smallest non-zero weight is 3, and since this is a group code, d = 3.

17. a.

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} c_1 + c_2 + c_3 \\ c_2 + c_4 \end{pmatrix}$$

Thus c_3 is a parity check for c_1 and c_2 , and c_4 is a parity check for just c_2 . The null space is $\{(0000), (1010), (0111), (1101)\}$.

$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} c_2 + c_4 \\ c_1 + c_3 + c_4 \end{pmatrix}$$

Here, c_2 is a parity check for c_4 , and c_1 is a parity check for c_3 and c_4 . The null space is $\{(0000), (1101), (1010), (0111)\}$. The null spaces do indeed coincide.

b. Each row of a matrix yields a specific equation that determines the null space. Interchanging rows only interchanges these equations; it does not change the equations. Hence, it does not change the null space.