Section 9.1

4)

$$\Omega = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 3 \\ 1 & 4 & 1 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$$

- a) Applying this to (1, 3, 0, 2) gives (1, 3, 1, 4).
- b) Applying it to (4, 1, 3, 3) gives (1, 2, 3, 0).
- 6) a) The polynomial of interest is $2x^3 + 2x + 1$. We do the left side of the tree first. Dividing the polynomial by $x^2 - 1$ leaves a remainder of 2x + 1 + 2x = 4x + 1. Dividing this by x - 1 leaves a remainder of 5, while dividing it by x + 1 leaves a remainder of -3. We move on to the right side of the tree. Dividing $2x^3 + 2x + 1$ by $x^2 + 1$ leaves a remainder of 1. Dividing this by x - i or x + i leaves a remainder of 1.
 - b) The polynomial of interest is $2x^3 + 2ix^2 x + i$. We do the left side of the tree first. Dividing the polynomial by $x^2 - 1$ leaves a remainder of -x + i + 2x + 2i = x + 3i. Dividing this by x - 1 leaves a remainder of 1 + 3i, while dividing it by x + 1leaves a remainder of -1 + 3i. We move on to the right side of the tree. Dividing $2x^3 + 2ix^2 - x + i$ by $x^2 + 1$ leaves a remainder of -x + i - 2x - 2i = -3x - i. Dividing this by x - i leaves a remainder of -4i, while dividing by x + i leaves a remainder of 2i.
- 7) $x^4 1$ factors as $(x^2 1)(x^2 4)$. $x^2 1$ factors as (x 1)(x 4), and $x^2 4$ factors as (x 2)(x 3).
- a) The polynomial of interest is 2x³ + 3x + 1. Dividing by x² 1 yields a remainder of 3x + 1 + 2x = 1. Therefore, dividing by x 1 or x 4 both yield a remainder of 1. Dividing 2x³ + 3x + 1 by x² 4 yields a remainder of 3x + 1 + 3x = x + 1. Dividing this by x 2 leaves a remainder of 3, while dividing it by x 3 leaves a remainder of 4.
 - b) The polynomial is $3x^3 + 3x^2 + x + 4$. Dividing by $x^2 1$ yields a remainder of x+4+3x+3 = 4x+2. Dividing this by x-1 leaves 1, and dividing by x-4 leaves 3. Dividing $3x^3 + 3x^2 + x + 4$ by $x^2 4$ leaves a remainder of x + 4 + 2x + 2 = 3x + 1. Dividing this by x 2 gives a remainder of 2, while dividing by x 3 gives a remainder of 0.
- 11) $a_{m+N} = a_m$ and $b_{m+N} = b_m$ because $\sin(x)$ and $\cos(x)$ are 2π -periodic. Indeed, since

$$\cos\left(\frac{2\pi(N+m)j}{N}\right) = \cos\left(2\pi j + \frac{2\pi mj}{N}\right) = \cos\left(\frac{2\pi mj}{N}\right)$$

 $a_{m+N} = a_m$. A similar computation with sine shows $b_{m+N} = b_m$.

12)

$$\cos\left(\frac{2\pi(N-m)j}{N}\right) = \cos\left(2\pi j - \frac{2\pi mj}{N}\right) = \cos\left(-\frac{2\pi mj}{N}\right) = \cos\left(\frac{2\pi mj}{N}\right)$$

since $\cos(x)$ is an even function. Therefore, $a_{N-m} = a_m$.

$$\sin\left(\frac{2\pi(N-m)j}{N}\right) = \sin\left(2\pi j - \frac{2\pi mj}{N}\right) = \sin\left(-\frac{2\pi mj}{N}\right) = -\sin\left(\frac{2\pi mj}{N}\right)$$

since $-\sin(x)$ is an odd function. Therefore, $b_{N-m} = -b_m$.

Section 9.4

1) a)
$$f * g = (2, -1, -1, 2, -6, 0).$$

b) $f * g = (0, 0, 3, -2, -11, 22, -20).$

- **2)** a) F(f) = (1, 3, 2, 0). F(g) = (2, 3, 0, 4).
 - b) f * g = (4, 1, 2, 0). F(f * g) = (2, 4, 0, 0).
 - c) Yes, F(f * g) = F(f)F(g), where the multiplication is component-wise on the right-hand side.