Section 9.1

4)

$$
\Omega=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 3 \\
1 & 4 & 1 & 4 \\
1 & 3 & 4 & 2
\end{array}\right)
$$

a) Applying this to $(1,3,0,2)$ gives $(1,3,1,4)$.
b) Applying it to $(4,1,3,3)$ gives $(1,2,3,0)$.
6) a) The polynomial of interest is $2 x^{3}+2 x+1$. We do the left side of the tree first. Dividing the polynomial by $x^{2}-1$ leaves a remainder of $2 x+1+2 x=4 x+1$. Dividing this by $x-1$ leaves a remainder of 5 , while dividing it by $x+1$ leaves a remainder of -3 . We move on to the right side of the tree. Dividing $2 x^{3}+2 x+1$ by $x^{2}+1$ leaves a remainder of 1 . Dividing this by $x-i$ or $x+i$ leaves a remainder of 1 .
b) The polynomial of interest is $2 x^{3}+2 i x^{2}-x+i$. We do the left side of the tree first. Dividing the polynomial by $x^{2}-1$ leaves a remainder of $-x+i+2 x+2 i=x+3 i$. Dividing this by $x-1$ leaves a remainder of $1+3 i$, while dividing it by $x+1$ leaves a remainder of $-1+3 i$. We move on to the right side of the tree. Dividing $2 x^{3}+2 i x^{2}-x+i$ by $x^{2}+1$ leaves a remainder of $-x+i-2 x-2 i=-3 x-i$. Dividing this by $x-i$ leaves a remainder of $-4 i$, while dividing by $x+i$ leaves a remainder of $2 i$.
7) $x^{4}-1$ factors as $\left(x^{2}-1\right)\left(x^{2}-4\right) \cdot x^{2}-1$ factors as $(x-1)(x-4)$, and $x^{2}-4$ factors as $(x-2)(x-3)$.
8) a) The polynomial of interest is $2 x^{3}+3 x+1$. Dividing by $x^{2}-1$ yields a remainder of $3 x+1+2 x=1$. Therefore, dividing by $x-1$ or $x-4$ both yield a remainder of 1 . Dividing $2 x^{3}+3 x+1$ by $x^{2}-4$ yields a remainder of $3 x+1+3 x=x+1$. Dividing this by $x-2$ leaves a remainder of 3 , while dividing it by $x-3$ leaves a remainder of 4 .
b) The polynomial is $3 x^{3}+3 x^{2}+x+4$. Dividing by $x^{2}-1$ yields a remainder of $x+4+3 x+3=4 x+2$. Dividing this by $x-1$ leaves 1 , and dividing by $x-4$ leaves 3 . Dividing $3 x^{3}+3 x^{2}+x+4$ by $x^{2}-4$ leaves a remainder of $x+4+2 x+2=3 x+1$. Dividing this by $x-2$ gives a remainder of 2 , while dividing by $x-3$ gives a remainder of 0 .
11) $a_{m+N}=a_{m}$ and $b_{m+N}=b_{m}$ because $\sin (x)$ and $\cos (x)$ are 2π-periodic. Indeed, since

$$
\cos \left(\frac{2 \pi(N+m) j}{N}\right)=\cos \left(2 \pi j+\frac{2 \pi m j}{N}\right)=\cos \left(\frac{2 \pi m j}{N}\right)
$$

$a_{m+N}=a_{m}$. A similar computation with sine shows $b_{m+N}=b_{m}$.
12)

$$
\cos \left(\frac{2 \pi(N-m) j}{N}\right)=\cos \left(2 \pi j-\frac{2 \pi m j}{N}\right)=\cos \left(-\frac{2 \pi m j}{N}\right)=\cos \left(\frac{2 \pi m j}{N}\right)
$$

since $\cos (x)$ is an even function. Therefore, $a_{N-m}=a_{m}$.

$$
\sin \left(\frac{2 \pi(N-m) j}{N}\right)=\sin \left(2 \pi j-\frac{2 \pi m j}{N}\right)=\sin \left(-\frac{2 \pi m j}{N}\right)=-\sin \left(\frac{2 \pi m j}{N}\right)
$$

since $-\sin (x)$ is an odd function. Therefore, $b_{N-m}=-b_{m}$.

Section 9.4

1) \quad a) $f * g=(2,-1,-1,2,-6,0)$.
b) $f * g=(0,0,3,-2,-11,22,-20)$.
2) a) $F(f)=(1,3,2,0) \cdot F(g)=(2,3,0,4)$.
b) $f * g=(4,1,2,0) . F(f * g)=(2,4,0,0)$.
c) Yes, $F(f * g)=F(f) F(g)$, where the multiplication is component-wise on the right-hand side.
