Section 9.3

3)

$$
\Omega=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right)
$$

a) Applying Ω to $\left(\begin{array}{l}1 \\ 2 \\ 0 \\ 2\end{array}\right)$ gives $\left(\begin{array}{c}5 \\ 1 \\ -3 \\ 1\end{array}\right)$.
b) Applying Ω to $\left(\begin{array}{c}i \\ -1 \\ 2 i \\ 2\end{array}\right)$ gives $\left(\begin{array}{c}1+3 i \\ -4 i \\ -1+3 i \\ 2 i\end{array}\right)$.

Additional Exercises

$$
\Omega=\left(\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \omega & \omega^{2} & \omega^{3} & -1 & -\omega & -\omega^{2} & -\omega^{3} \\
1 & \omega^{2} & -1 & -\omega^{2} & 1 & \omega^{2} & -1 & -\omega^{2} \\
1 & \omega^{3} & -\omega^{2} & \omega & -1 & -\omega^{3} & \omega^{2} & -\omega \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & -\omega & \omega^{2} & -\omega^{3} & -1 & \omega & -\omega^{2} & \omega^{3} \\
1 & -\omega^{2} & -1 & \omega^{2} & 1 & -\omega^{2} & -1 & \omega^{2} \\
1 & -\omega^{3} & -\omega^{2} & -\omega & -1 & \omega^{3} & \omega^{2} & \omega
\end{array}\right)
$$

1) Applying this matrix to $f=(-1,-1,1,1,1,1,-1,-1)$ yields

$$
\left(\begin{array}{c}
0 \\
-2-2 \sqrt{2}+2 i \\
0 \\
-2+2 \sqrt{2}-2 i \\
0 \\
-2+2 \sqrt{2}+2 i \\
0 \\
-2-2 \sqrt{2}-2 i
\end{array}\right)
$$

Taking norms gives:

$$
\left(\begin{array}{c}
0 \\
2 \sqrt{4+2 \sqrt{2}} \\
0 \\
2 \sqrt{4-2 \sqrt{2}} \\
0 \\
2 \sqrt{4-2 \sqrt{2}} \\
0 \\
2 \sqrt{4+2 \sqrt{2}}
\end{array}\right)
$$

2) Applying this matrix to $f=(-1,-1,1,1,-1,-1,1,1)$ yields

$$
\left(\begin{array}{c}
0 \\
0 \\
4+4 i \\
0 \\
0 \\
0 \\
4-4 i \\
0
\end{array}\right)
$$

Taking norms gives:

$$
\left(\begin{array}{c}
0 \\
0 \\
4 \sqrt{2} \\
0 \\
0 \\
0 \\
4 \sqrt{2} \\
0
\end{array}\right)
$$

3) Applying this matrix to $f=(-1,1,-1,1,-1,1,-1,1)$ yields

$$
\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
-8 \\
0 \\
0 \\
0
\end{array}\right)
$$

Taking norms gives:

$$
\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
8 \\
0 \\
0 \\
0
\end{array}\right)
$$

The answers above were achieved using the formula for the DFT in the book, which is simply matrix multiplication of Ω with f. If you used the definition of the DFT that I am told was given in class, $\frac{1}{N} \Omega f$), then you would arrive at the answers above, all divided by 8 .

