Section 9.3

1) a) $|-i|=\sqrt{0^{2}+(-1)^{2}}=1 .-i=\cos (3 \pi / 2)+i \sin (3 \pi / 2)$.
b) $\left|\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right|=\sqrt{\left(\frac{\sqrt{2}}{2}\right)^{2}+\left(\frac{\sqrt{2}}{2}\right)^{2}}=\sqrt{1 / 2+1 / 2}=1 . \frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}=\cos (\pi / 4)+i \sin (\pi / 4)$.
c) $\left|-\frac{\sqrt{3}}{2}-i \frac{1}{2}\right|=\sqrt{\left(-\frac{\sqrt{3}}{2}\right)^{2}+\left(-\frac{1}{2}\right)^{2}}=\sqrt{3 / 4+1 / 4}=1 .-\frac{\sqrt{3}}{2}-i \frac{1}{2}=\cos (7 \pi / 6)+i \sin (7 p i / 6)$.
2)

$$
\begin{gathered}
\omega^{3}=\left(\frac{1}{2}\right)^{3}+3\left(\frac{1}{2}\right)^{2}\left(i \frac{\sqrt{3}}{2}\right)+3\left(\frac{1}{2}\right)\left(i \frac{\sqrt{3}}{2}\right)^{2}+\left(i \frac{\sqrt{3}}{2}\right)^{3}=\frac{1}{8}+i \frac{3 \sqrt{3}}{8}-\frac{9}{8}-i \frac{3 \sqrt{3}}{8}=-1 . \\
\omega^{6}=\left(\omega^{3}\right)^{2}=(-1)^{2}=1
\end{gathered}
$$

Fourier Series Problems

We must choose a convention for the value of $f(\pi)$. This will not affect the actual values of the Fourier coefficients, but it will affect the values of the approximations. We will take $f(\pi)=1$ so that

$$
f(x)=\left\{\begin{aligned}
1 & \text { if } 0 \leq x \leq \pi \\
-1 & \text { if } \pi<x \leq 2 \pi
\end{aligned}\right.
$$

We can now calculate

$$
\begin{gathered}
a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) d x=0 \\
a_{m}=\frac{1}{\pi}\left(\int_{0}^{\pi} \cos (m x) d x+\int_{\pi}^{2 \pi}-\cos (m x) d x\right)=\frac{1}{m \pi}(\sin (m \pi)-\sin 0-\sin (2 \pi m)+\sin (m \pi))=0 \\
b_{m}=\frac{1}{\pi}\left(\int_{0}^{\pi} \sin (m x) d x+\int_{\pi}^{2 \pi}-\sin (m x) d x\right)=\frac{1}{m \pi}(-\cos (m \pi)+\cos 0+\cos (2 \pi m)-\cos (m \pi))=\frac{2}{m \pi}\left(1-(-1)^{m}\right)
\end{gathered}
$$

Therefore, $b_{m}=0$ if m is even, and $b_{m}=\frac{4}{m \pi}$ if m is odd. $f(x)=\sum_{n=0}^{\infty} \frac{4}{(2 n+1) \pi} \sin (2 n+1) x$.
The approximate values of the first few coefficients, as given by the Left-Hand Riemann sum with 100 rectangles, are as follows:
$a_{0} \approx .02 . a_{1}, a_{3}, a_{5}, a_{7} \approx 0 . a_{2}, a_{4}, a_{6}, a_{8} \approx .04 . b_{n} \approx 0$ for n even. All of these coefficients should be exactly 0 .
$b_{1} \approx 1.2728$, while the exact value is $4 / \pi \approx 1.2732$.
$b_{3} \approx .4232$, while the exact value is $4 / 3 \pi \approx .4244$.
$b_{5} \approx .2526$, while the exact value is $4 / 5 \pi \approx .2546$.
$b_{7} \approx .1789$, while the exact value is $4 / 7 \pi \approx .1819$.

