
Section 9.3
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Fourier Series Problems

We must choose a convention for the value of f(π). This will not affect the actual values of the Fourier
coefficients, but it will affect the values of the approximations. We will take f(π) = 1 so that

f(x) =
{

1 if 0 ≤ x ≤ π
−1 if π < x ≤ 2π

We can now calculate
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Therefore, bm = 0 if m is even, and bm = 4
mπ if m is odd. f(x) =

∑∞
n=0

4
(2n+1)π sin(2n+ 1)x.

The approximate values of the first few coefficients, as given by the Left-Hand Riemann sum with 100
rectangles, are as follows:

a0 ≈ .02. a1, a3, a5, a7 ≈ 0. a2, a4, a6, a8 ≈ .04. bn ≈ 0 for n even. All of these coefficients should be
exactly 0.

b1 ≈ 1.2728, while the exact value is 4/π ≈ 1.2732.
b3 ≈ .4232, while the exact value is 4/3π ≈ .4244.
b5 ≈ .2526, while the exact value is 4/5π ≈ .2546.
b7 ≈ .1789, while the exact value is 4/7π ≈ .1819.
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