MAT 312/AMS 351 Fall 2010 Review for Midterm 1

$\S 1.2$. Understand how to use induction to prove that a statement $P(n)$ holds for every integer n. Example: $P(n)$ is the statement $1+2+\ldots+n=\frac{n(n+1)}{2}$. Problem 2 p.14. Example: The binomial coefficients $\binom{n}{k}$ are defined for $0 \leq k \leq n$ by $\binom{n}{0}=\binom{n}{n}=1$ and $\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1} ;$ and $P(n)$ is the statement that $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ for every $0 \leq k \leq n$.
$\S 1.3$ Understand the statement of the division algorithm, especially how to show the uniqueness of the quotient and the remainder. Understand the definition of the greatest common divisor d of two positive integers a and b, and the notation $d=(a, b)$. Be able to apply the Euclidean Algorithm to two integers a and b, yielding their g.c.d. d. Be able to use that calculation to express d as an integral linear combination of a and $b: d=j \cdot a+k \cdot b$. Example 1.26 p. 23. Understand the special case: if $(a, b)=1$, then there exist integers j and k such that $1=j a+k b$. Understand the proof of Theorem 1.30 (i): it uses that special case. Review assigned exercises on p. 28, 29.
$\S 1.4$ Be able to reproduce the definition of prime number. Understand the "Fundamental Theorem of Arithmetic" and be able to factorize any integer ≤ 1000 (note that it must be prime, or have a prime factor ≤ 31). Know how to prove that there are infinitely many primes. Given prime factorizations for a and b, be able to immediately write down the factorization of their g.c.d, and be able to calculate their least common multiple from the rule $(\operatorname{gcd}(a, b))(\operatorname{lcm}(a, b))$ $=a b$. (Corollary 1.40 p .33).

$\S 1.5$ Know the proof that $\sqrt{2}$ is not rational.

§1.6 Understand that \equiv_{n} ("congruence $\left.\bmod n "\right)$ is an equivalence relation, and that the equivalence classes ("congruence classes") form a system of numbers closed under addition and multiplication. This is modular arithmetic. Be comfortable with calculations in modular arithmetic: know how to represent each congruence class modulo n by a number in the range $0, \ldots, n-1$. Be able to construct addition tables and multiplication tables modulo n. Understand what it means for a class $[a]_{n}$ to be invertible: there exists a class $[b]_{n}$ such that $[a]_{n}[b]_{n}=[1]_{n}$; equivalently, $a b \equiv_{n} 1$. Know how to prove that if n is prime, every nonzero class mod n is invertible. And know how to show that if n is not prime, then there exist some non-invertible classes: be able to prove that $[a]_{n}$ is invertible if and only if $(a, n)=1$. Review homework.

