MAT 312/AMS 351
Notes and exercises on normal subgroups and quotient groups.

If H is a subgroup of G, the equivalence relation \sim_{H} is defined between elements of G as follows:

$$
g_{1} \sim_{H} g_{2} \Leftrightarrow \exists h \in H, g_{1}=g_{2} h .
$$

Proposition 1. This is indeed an equivalence relation.
Proof: The three properties: reflexive, symmetric, transitive correspond to the three properties of a subgroup: H contains the identity element e of G, H contains inverses of all its elements, H is closed under composition.

- For any $g \in G$, since $e \in H$ and $g e=g$, it follows that $g \sim_{H}$ $g e=g$, so the relation \sim_{H} is reflexive.
- If $g_{1} \sim_{H} g_{2}, \exists h \in H, g_{1}=g_{2} h$. Since h^{-1} must then also belong to H, and $g_{1} h^{-1}=g_{2} h h^{-1}=g_{2}$, it follows that $g_{2} \sim_{H} g_{1}$, so the relation \sim_{H} is symmetric.
- If $g_{1} \sim_{H} g_{2}$ and $g_{2} \sim_{H} g_{3}$, then $\exists h \in H, g_{1}=g_{2} h$, and also $\exists h^{\prime} \in H, g_{2}=g_{3} h^{\prime}$. Since then $h h^{\prime} \in H$, and $g_{1}=g_{2} h=$ $\left(g_{3} h^{\prime}\right) h=g_{3}\left(h^{\prime} h\right)$, it follows that $g_{1} \sim_{H} g_{3}$; so the relation \sim_{H} is transitive.

For the \sim_{H} equivalence class of the element $g \in G$ we have the suggestive notation $g H$ (since every element of that equivalence class is $g h$ for some $h \in H$); This equivalence class is called the left H-coset of g; "left" because $g H$ is obtained by multiplying every element of H on the left by g. Note that the left H-coset of the identity e is H itself.

Right H-cosets. In a completely analogous way one can define $g_{1} \equiv_{H}$ $g_{2} \Leftrightarrow \exists h \in H, g_{1}=h g_{2}$. A completely analogous argument proves that, since H is a subgroup, the relation \equiv_{H} is also an equivalence relation. In this case the equivalence class of $g \in G$ is written $H g$ and called the right H-coset of g.

Example. Consider $G=S(3)$, the group of permutations of 3 elements, so in cycle notation $G=\{e,(12),(13),(23),(123),(132)\}$; and consider the subgroup $H=\{e,(12)\}$. Since $|G|=6$ and $|H|=2$, we expect 3 left H-cosets. They are

- $H=\{e,(12)\}$
- (13) $H=\{(13),(13)(12)=(123)\}$
- (23) $H=\{(23),(23)(12)=(132)\}$.

Note that (123) $H=(12) H$ and (132) $H=(23) H$. A coset can have several names!

On the other hand the three right H-cosets are

- $H=\{e,(12)\}$
- $H(13)=\{(13),(12)(13)=(132)\}$
- $H(23)=\{(23),(12)(23)=(123)\}$.

So in general left H-cosets and right H-cosets give two different partitions of G. But sometimes the partitions coincide. In this case H is called a normal subgroup of G. More formally:

Definition: The subgroup H of group G is called normal if $g H=H g$ for every $g \in G$.

Example 1. With $G=S(3)$ as above, consider the subgroup $H=$ $\{e,(123),(132)\}$. Since $|G|=6$ and $|H|=3$, we expect two left H cosets and two right H-cosets. In either case one coset must be H itself; so the other one must contain the three remaining elements, namely $\{(12),(13),(23)\}$. So H is normal in G. The same thing will happen whenever $|H|=\frac{1}{2}|G|$; in this case we say that H is a subgroup of index 2 , and we can state the proposition: Every subgroup of index 2 is normal.

Example 2. Consider $G=A(4)$, the group of all even permutations of 4 elements. In cycle notation,

$$
\begin{gathered}
G=\{e,(123),(124),(132),(134),(142),(143), \\
(234),(243),(12)(34),(13)(24),(14)(23)\}
\end{gathered}
$$

(Since exactly half the permutations in $S(4)$ are even, this G is an index-2 subgroup of $S(4)$, and hence a normal subgroup of $S(4)$). In G, consider the subgroup $H=\{e,(12)(34),(13)(24),(14)(23)\}$. Here with $|G|=12,|H|=4$ we expect three cosets.

The left cosets are

$$
\begin{aligned}
& \text { - } H=\{e,(12)(34),(13)(24),(14)(23)\} \\
& \text { - }(123) H=\{(123),(123)(12)(34)=(134), \\
& \quad(123)(13)(24)=(243),(123)(14)(23)=(142)\} \\
& \text { - }(124) H=\{(124),(124)(12)(34)=(143), \\
& \quad(124)(13)(24)=(132),(124)(14)(23)=(234])\}
\end{aligned}
$$

The right cosets are

$$
\text { - } H=\{e,(12)(34),(13)(24),(14)(23)\}
$$

- $H(123)=\{(123),(12)(34)(123)=(243)$,

$$
(13)(24)(123)=(142),(14)(23)(123)=(134)\}
$$

- $H(124)=\{(124),(12)(34)(124)=(234)$,

$$
(13)(24)(124)=(143),(14)(23)(124)=(132)\}
$$

Note that (123) $H=H(123)$ and (124) $H=H(124)$. So H is a normal subgroup of $A(4)$.

Quotient groups. When H is a normal subgroup of G, the law of composition of G induces a composition between H-cosets which makes this set also into a group. This is called the quotient group of G by H, and written G / H.

Definition: For two cosets $g H$ and $g^{\prime} H$ (H is a normal subgroup of G, but we write them as left cosets for explicitness) we define $g H \cdot g^{\prime} H$ to be $\left(g g^{\prime}\right) H$.

Proposition 2. This operation is well-defined, and makes the set of cosets into a group.

Proof: First, we need to show the operation is well-defined because the result might be different if we had chosen different names (i.e. different representative elements) for the cosets $g H$ and $g^{\prime} H$. So suppose in fact that $\gamma \in g H$ and $\gamma^{\prime} \in g^{\prime} H$. We need to show that $\gamma \gamma^{\prime} H=g g^{\prime} H$. What we know is that there is an element $h \in H$ such that $\gamma=g h$, and an element h^{\prime} such that $\gamma^{\prime}=g^{\prime} h^{\prime}$. So $\gamma \gamma^{\prime} H=(g h)\left(g^{\prime} h^{\prime}\right) H$. Now $h^{\prime} H=H$ since $h^{\prime} \in H$, and $g^{\prime} h^{\prime} H=g^{\prime} H=H g^{\prime}$ since H is normal. Furthermore $h H=H$ since $h \in H$, so $h g^{\prime} h^{\prime} H=h H g^{\prime}=H g^{\prime}$, and finally $\gamma \gamma^{\prime} H=g H g^{\prime}=g g^{\prime} H$ using normality again.

Next we need to show that this operation satisfies the three conditions required of a group law.

- Associativity. $g_{1} H \cdot\left(g_{2} H \cdot g_{3} H\right)=g_{1} H \cdot\left(g_{2} g_{3}\right) H=g_{1}\left(g_{2} g_{3}\right) H=$ $\left(g_{1} g_{2}\right) g_{3} H=\left(g_{1} g_{2}\right) H \cdot g_{3} H=\left(g_{1} H \cdot g_{2} H\right) \cdot g_{3} H$.
- Identity. The coset $e H=H$ is the identity, since $e H \cdot g H=$ $(e g) H=g H$, and $g H \cdot e H=(g e) H=g H$.
- Inverses. The inverse of $g H$ is $g^{-1} H$, since $g H \cdot g^{-1} H=\left(g g^{-1}\right) H=$ $e H$ and $g^{-1} H \cdot g H=\left(g^{-1} g\right) H=e H$.

Example: With $G=A(4)$ and H as above, $G / H=\{H,(123) H,(124) H\}$. Since $|G / H|=3$, a prime, the group G / H must be isomorphic to \mathbf{Z}_{3}.

In fact the composition table for G / H is

	H	$(123) H$	$(124) H$
H	H	$(123) H$	$(124) H$
$(123) H$	$(123) H$	$(132) H=(124) H$	$(13)(24) H=H$
$(124) H$	$(124) H$	$(14)(23) H=H$	$(142) H=(123) H$

which is a relabeling of

	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

Exercises.

(1) "A completely analogous argument proves that, since H is a subgroup, the relation \equiv_{H} is also an equivalence relation." Write out the details of this argument.
(2) In $G=\mathbf{Z}_{21}^{*}=\{1,2,4,5,8,10,11,13,16,17,19,20\}$ show that the set $H=\{1,4,16\}$ is a subgroup. Since G is abelian, H is automatically normal. Identify the four elements of G / H and construct their multiplication table. Is this group isomorphic to \mathbf{Z}_{4} ?
(3) Let H be a subgroup of G. Show that H is normal if and only if $g h g^{-1} \in H$ for every $g \in G, h \in H$. Another way of writing this is: $g H^{-1}=H$ for every $g \in G$.

