MAT 312/AMS 351
Notes and Exercises on Permutations and Matrices.
We can represent a permutation $\pi \in S(n)$ by a matrix M_{π} in the following useful way. If $\pi(i)=j$, then M_{π} has a 1 in column i and row j; the entries are 0 otherwise. This M_{π} permutes the unit column vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$, by matrix multiplication, just the way π permutes $1,2, \ldots, n$.

Example. Suppose $n=6$ and $\pi=(1542)(36)$. Following the rule, we get

$$
M_{\pi}=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

We can check: $\pi(1)=5$, and

$$
M_{\pi}\left(\mathbf{e}_{1}\right)=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right)=\mathbf{e}_{5},
$$

etc.
Proposition 1. For $\sigma, \pi \in S(n)$, we have $M_{\pi \sigma}=M_{\pi} M_{\sigma}$; i.e. the matrix corresponding to a composition of permutations is the product of the individual matrices.

Proof. On the one hand, $M_{\pi \sigma}\left(\mathbf{e}_{i}\right)=\mathbf{e}_{\pi \sigma(i)}=\mathbf{e}_{\pi(\sigma(i))}$. On the other hand, $M_{\pi} M_{\sigma}\left(\mathbf{e}_{i}\right)=M_{\pi}\left(\mathbf{e}_{\sigma(i)}\right)=\mathbf{e}_{\pi(\sigma(i))}$ also.

To proceed we need some facts about determinants.
(1) Every square matrix M has a determinant $\operatorname{det} M$, which is a sum of products of entries in M. So if M has integer entries, $\operatorname{det} M$ will be an integer, etc.
(2) The determinant of a 1×1 matrix $\left(a_{11}\right)$ is the number a_{11} itself. The determinant of the 2×2 matrix

$$
\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

is $a_{11} a_{22}-a_{12} a_{21}$ and working by induction the determinant of the $n \times n$ matrix

$$
M=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
a_{21} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)
$$

is $\operatorname{det} M=a_{11} \operatorname{det} M_{11}-a_{12} \operatorname{det} M_{12}+\cdots \pm a_{1 n} \operatorname{det} M_{1 n}$ where the signs alternate, and $M_{1 k}$ is the matrix obtained from M by striking out the first row and the k th column.
(3) If I is the $n \times n$ identity matrix

$$
I=\left(\begin{array}{llllll}
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
& & & \ldots & & \\
0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

then $\operatorname{det} I=1$. This follows from the construction above.
(4) If matrix M^{\prime} is obtained from matrix M by permuting two rows, then $\operatorname{det} M^{\prime}=-\operatorname{det} M$. (This is also true for columns, but we'll be working with rows).
(5) $\operatorname{det}(M N)=\operatorname{det} M \operatorname{det} N$. These last two facts are not obvious. Consult any Linear Algebra text for proofs.
Proposition 2. If M_{π} is the matrix corresponding to a permutation π, then $\operatorname{det} M= \pm 1$.

Proof. There is exactly one row of M with a 1 in the first column. If it is not already at the top, it can be switched with the top row. Similarly the unique row with a 1 in column 2 can be placed in second position, etc. Each time the determinant changes by a factor of -1 (if the row has moved) or 1 if it stays the same. At the end we have an identity matrix (with determinant 1); and a sign which is the product of all the -1 s accumulated during the process.

Shorter proof. Write π^{-1} for the inverse permutation. Then since $\pi^{-1} \pi=$ e (the identity permutation) Prop. 1 tells us that $M_{\pi^{-1}} M_{\pi}=I$ (the identity matrix). So by Fact 5 , $\operatorname{det} M_{\pi^{-1}} \operatorname{det} M_{\pi}=1$. Since $\operatorname{det} M_{\pi}$ divides 1 , it must equal 1 or -1 .

Definition: The sign of a permutation $\pi \in S(n)$ is defined to be the determinant of the corresponding matrix:

$$
\operatorname{sgn} \pi=\operatorname{det} M_{\pi}
$$

Proposition 3. Write π as a product of transpositions (permutations that exchange 2 elements and leave the others fixed; this can be done in many different ways). Then
$\operatorname{sgn} \pi=(-1)^{\text {number of transpositions }}$.
Proof. Suppose the transpositions are $\tau_{1}, \tau_{2}, \ldots, \tau_{N}$ so that

$$
\pi=\tau_{N} \tau_{N-1} \cdots \tau_{2} \tau_{1}
$$

Then by repeated application of Prop. 1,

$$
M_{\pi}=M_{\tau_{N}} M_{\tau_{N-1}} \cdots M_{\tau_{2}} M_{\tau_{1}}
$$

and by repeated application of Fact 5 above,

$$
\operatorname{det} M_{\pi}=\operatorname{det} M_{\tau_{N}} \operatorname{det} M_{\tau_{N-1}} \cdots \operatorname{det} M_{\tau_{2}} \operatorname{det} M_{\tau_{1}} .
$$

Now since a transposition $\tau=(i j)$ exchanges elements i and j and leaves the others fixed, the matrix M_{τ} must have the form

$$
M_{\tau}=\begin{array}{c|ccccccc|}
& 1 & \ldots & i & \ldots & j & \ldots & n \\
\hline 1 & 1 & \ldots & 0 & \ldots & 0 & \ldots & 0 \\
\ldots & \ldots \\
i & 0 & \ldots & 0 & \ldots & 1 & \ldots & 0 \\
\ldots & \ldots \\
j & 0 & \ldots & 1 & \ldots & 0 & \ldots & 0 \\
\ldots & \ldots \\
n & 0 & \ldots & 0 & \ldots & 0 & \ldots & 1 \\
\hline
\end{array}
$$

with 1 s along the diagonal except in rows i and j. Since a single row swap makes this the identity matrix, we have $\operatorname{sgn} \tau=-1$. Since this holds for every transposition, we have $\operatorname{sgn} \pi=(-1)^{N}$, as desired.

Exercises.

(1) Working in $S(3)$, write down the matrices corresponding to $\pi=$ (123) and to $\sigma=(12)$. Calculate the matrix products $M_{\pi} M_{\sigma}$ and $M_{\sigma} M_{\pi}$. Check that these correspond to the permutations $\pi \sigma=(13)$ and $\sigma \pi=(23)$.
(2) Working in $S(6)$, write the permutation (1346)(25) as a product of transpositions in two different ways and with different numbers of transpositions. Please do not use copies $(i j)(i j)$ of a transposition and its inverse to pad your lists.
(3) What is the sign of the permutation that takes a list of n things and writes it in reverse order?
(4) Show that a permutation and its inverse have the same sign.
(5) The Alternating Group $A(4)$ consists of the 12 even permutations of 4 elements. Make a list of the 12, in cycle notation. Explain why in general $A(n)$ is closed under composition (i.e. why if $\sigma \in A(n), \pi \in A(n)$ then $\sigma \pi \in A(n)$), and why if $\pi \in A(n)$ then $\pi^{-1} \in A(n)$. This makes $A(n)$ a subgroup of $S(n)$.
(6) Still working with $A(n)$, explain why if $\pi \in A(n)$ and σ is any permutation in $S(n)$, then $\sigma \pi \sigma^{-1} \in A(n)$.
(7) Prove that for any nonempty subset H of a group G with composition law $*$, the condition

- If $h, k \in H$ then $h * k^{-1} \in H$.
is equivalent to the two conditions
- If $h, k \in H$ then $h * k \in H$.
- If $h \in H$ then $h^{-1} \in H$.

