
MAT 312/AMS 351
Notes and Exercises on Permutations and Matrices.

We can represent a permutation π ∈ S(n) by a matrix Mπ in the
following useful way. If π(i) = j, then Mπ has a 1 in column i and
row j; the entries are 0 otherwise. This Mπ permutes the unit column
vectors e1, e2, . . . , en, by matrix multiplication, just the way π permutes
1, 2, . . . , n.

Example. Suppose n = 6 and π = (1542)(36). Following the rule,
we get

Mπ =















0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0















.

We can check: π(1) = 5, and

Mπ(e1) =















0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
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0















= e5,

etc.

Proposition 1. For σ, π ∈ S(n), we have Mπσ = MπMσ; i.e. the
matrix corresponding to a composition of permutations is the product
of the individual matrices.

Proof. On the one hand, Mπσ(ei) = eπσ(i) = eπ(σ(i)). On the other
hand, MπMσ(ei) = Mπ(eσ(i)) = eπ(σ(i)) also. �

To proceed we need some facts about determinants.

(1) Every square matrix M has a determinant detM , which is a
sum of products of entries in M . So if M has integer entries,
detM will be an integer, etc.

(2) The determinant of a 1×1 matrix (a11) is the number a11 itself.
The determinant of the 2× 2 matrix

(

a11 a12
a21 a22

)

1



2

is a11a22 − a12a21 and working by induction the determinant of
the n× n matrix

M =









a11 . . . a1n
a21 . . . a2n
. . . . . . . . .

an1 . . . ann









is detM = a11 detM11 − a12 detM12 + · · · ± a1n detM1n where
the signs alternate, and M1k is the matrix obtained from M by
striking out the first row and the kth column.

(3) If I is the n× n identity matrix

I =















1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .

0 0 0 . . . 1 0
0 0 0 . . . 0 1















then det I = 1. This follows from the construction above.

(4) If matrixM ′ is obtained from matrixM by permuting two rows,
then detM ′ = − detM . (This is also true for columns, but we’ll
be working with rows).

(5) det(MN) = detM detN. These last two facts are not obvious.
Consult any Linear Algebra text for proofs.

Proposition 2. If Mπ is the matrix corresponding to a permutation
π, then detM = ±1.

Proof. There is exactly one row of M with a 1 in the first column. If it
is not already at the top, it can be switched with the top row. Similarly
the unique row with a 1 in column 2 can be placed in second position,
etc. Each time the determinant changes by a factor of −1 (if the row
has moved) or 1 if it stays the same. At the end we have an identity
matrix (with determinant 1); and a sign which is the product of all the
−1s accumulated during the process. �

Shorter proof. Write π−1 for the inverse permutation. Then since π−1π =
e (the identity permutation) Prop. 1 tells us that Mπ−1Mπ = I (the
identity matrix). So by Fact 5, detMπ−1 detMπ = 1. Since detMπ

divides 1, it must equal 1 or -1. �
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Definition: The sign of a permutation π ∈ S(n) is defined to be the
determinant of the corresponding matrix:

sgn π = detMπ.

Proposition 3. Write π as a product of transpositions (permutations
that exchange 2 elements and leave the others fixed; this can be done
in many different ways). Then

sgn π = (−1)number of transpositions.

Proof. Suppose the transpositions are τ1, τ2, . . . , τN so that

π = τNτN−1 · · · τ2τ1.

Then by repeated application of Prop. 1,

Mπ = MτN
MτN−1

· · ·Mτ2
Mτ1

and by repeated application of Fact 5 above,

detMπ = detMτN
detMτN−1

· · · detMτ2
detMτ1

.

Now since a transposition τ = (ij) exchanges elements i and j and
leaves the others fixed, the matrix Mτ must have the form

Mτ =

1 . . . i . . . j . . . n

1 1 . . . 0 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

i 0 . . . 0 . . . 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

j 0 . . . 1 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

n 0 . . . 0 . . . 0 . . . 1

with 1s along the diagonal except in rows i and j. Since a single row
swap makes this the identity matrix, we have sgn τ = −1. Since this
holds for every transposition, we have sgn π = (−1)N , as desired. �
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Exercises.

(1) Working in S(3), write down the matrices corresponding to π =
(123) and to σ = (12). Calculate the matrix products MπMσ

and MσMπ. Check that these correspond to the permutations
πσ = (13) and σπ = (23).

(2) Working in S(6), write the permutation (1346)(25) as a prod-
uct of transpositions in two different ways and with different
numbers of transpositions. Please do not use copies (ij)(ij) of
a transposition and its inverse to pad your lists.

(3) What is the sign of the permutation that takes a list of n things
and writes it in reverse order?

(4) Show that a permutation and its inverse have the same sign.

(5) The Alternating Group A(4) consists of the 12 even permuta-
tions of 4 elements. Make a list of the 12, in cycle notation. Ex-
plain why in general A(n) is closed under composition (i.e. why
if σ ∈ A(n), π ∈ A(n) then σπ ∈ A(n)), and why if π ∈ A(n)
then π−1

∈ A(n). This makes A(n) a subgroup of S(n).

(6) Still working with A(n), explain why if π ∈ A(n) and σ is any
permutation in S(n), then σπσ−1

∈ A(n).

(7) Prove that for any nonempty subset H of a group G with com-
position law ∗, the condition

• If h, k ∈ H then h ∗ k−1
∈ H.

is equivalent to the two conditions
• If h, k ∈ H then h ∗ k ∈ H.
• If h ∈ H then h−1

∈ H.


