MAT 312/AMS 351 - Fall 2010

Homework 9

1. Calculate the order of the permutation

$$
\pi=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 6 & 1 & 8 & 2 & 5 & 7 & 3
\end{array}\right)
$$

Hint: write it first in cycle notation.
2. Same question for

$$
\pi=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 1 & 5 & 7 & 6 & 3 & 8 & 2
\end{array}\right)
$$

3. Give a conjugacy σ relating $\pi_{1}=(1547)(263)$ to $\pi_{2}=(123)(4567)$, so that $\pi_{2}=\sigma \pi_{1} \sigma^{-1}$. Check that it works.
4. Prove that two conjugate permutations have the same order.
5. Break up $\mathrm{S}(5)$ into conjugacy classes (following our work in class with $\mathrm{S}(4)$: list the possible shapes, and count how many permutations have each shape). Check that the sum of the populations of your conjugacy classes is 120 .
6. Show that the only possible orders for a permutation in $S(5)$ are 1,2 , $3,4,5,6$. What happens for $\mathrm{S}(6)$? $\mathrm{S}(7)$?
