MAT 312/AMS 351 - Fall 2010

Homework 5

1. Explain in your own words why, if n is a prime, a linear congruence equation $a x \equiv_{n} b$ always has a solution (i.e that given any integers a and b, there exists an integer x such that $a x-b$ is a multiple of n), and that any two solutions are the same modulo n.
2. Solve $3 x \equiv_{19}$ 16. Not by trial-and-error please.
3. Solve $5 x \equiv_{14} 12$ (14 not prime, but $(5,14)=1$ sufficient).
4. Review the procedure for the case $(a, n)=d \neq 1$.
5. Explain why $6 x \equiv_{21} 2$ has no solutions.
6. Show that $6 x \equiv_{21} 9$ if and only if $2 x \equiv_{7} 3$.
7. Solve $2 x \equiv_{7} 3$. Let x_{0} be the unique solution.
8. Check that $x_{0}, x_{1}=x_{0}+1 \cdot 7$ and $x_{2}=x_{0}+2 \cdot 7$ are all different solutions of $6 x \equiv_{21} 9$. Why does this not work for $x_{0}+3 \cdot 7$?
9. Find the seven solutions of $14 x \equiv_{35} 21$.
