MAT 312/AMS 351 - Fall 2010

Homework 4

1. p. 43 Exercise 1.
2. p. 43 Exercise 3. Consider also the numbers 9 and 11.
3. Given positive integers a and b, suppose there exist integers k and ℓ such that $1=k a+\ell b$. Show that a and b must be relatively prime.
4. Suppose a positive number $n>1$ is relatively prime to every number strictly between 1 and n. Show that n must be a prime.
5. Using the previous 2 exercises, or otherwise, prove that in the number system of integers $\bmod n$, if every class has a multiplicative inverse then n must be a prime.
6. Write out the multiplication table for the set of congruence classes mod 11.
7. For each nonzero class $x=[1],[2], \ldots,[10]$, write out the sequence of powers of $x \bmod 11$. For example $[5]^{1}=[5],[5]^{2}=[25]=[3],[5]^{3}=$ $[3 \cdot 5]=[15]=[4]$, etc. Stop when you get to [1].
8. The number of distinct powers of x (counting $x^{0}=[1]$) is called the (multiplicative) order of x. What are the different orders occurring in your list? What numerical property do these orders share?
