MAT 312/AMS 351 - Fall 2010

Homework 3

1. Prove (by induction, or otherwise) that

$$
(a-b) \mid a^{n}-b^{n}
$$

for any integers $a>b$. A proof by induction would start with $a^{2}-b^{2}=$ $(a-b)(a+b)$, note that $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$, use this form to conjecture the general statement and then prove it.
2. Use Exercise 1 to show that if $2^{n}-1$ is prime, then n must be prime. [The converse is not true in general, but a prime of the form $2^{n}-1$ is called a Mersenne prime. The largest prime known $2^{43112609}-1$, discovered in 2008, is a Mersenne prime. Writing it out would require 12978189 decimal digits.]
3. What would happen to the Fundamental Theorem of Algebra if 1 were allowed to be a prime number?
4. Find the first positive integer value of n such that the formula $n^{2}+n+29$ does not result in a prime number.
5. Consider an integer c with prime factorization

$$
c=p_{1}^{i_{1}} p_{2}^{i_{2}} \cdots p_{k}^{i_{k}},
$$

with $p_{1}, \ldots p_{k}$ distinct. Show that in the prime factorization of c^{n}, all the exponents are divisible by n.
6. Use the last execise to show that if an n-th power is the product of two relatively prime factors:

$$
c^{n}=a b, \quad(a, b)=1
$$

then each of the factors is itself an n-th power.

