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1. Error-detecting matrices.

Suppose a group code is generated by a matrix

G =











1 0 0 0 1 0 0
0 1 0 0 1 1 1
0 0 1 0 0 1 1
0 0 0 1 0 0 1











.

We can write this matrix as

G = (I4|A)

where A is the 4× 3 matrix encoding the check bits.
Let us construct another matrix using A:

H =

(

A

I3

)

.

In this case,

H =



























1 0 0
1 1 1
0 1 1
0 0 1
1 0 0
0 1 0
0 0 1



























.

In general if our code is f : Bm → Bn, then G is of the form G = (Im|A)

and H of the form H =

(

A

In−m

)

.

Remark: The product GH is a 4× 3 (in general, m× (n−m)) matrix of
zeroes. What happens is that during the multiplication each element in A

gets added to itself, giving 0. Schematically

GH = (Im|A) ·

(

A

In−m

)

= ImA+ AIn−m = A+ A = 0
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where here 0 represents the m× (n−m) matrix of zeroes.

This means that H, applied on the right to any one of the code-words,
must give the length n −m 0-vector: (0, . . . , 0), since a code-word is of the
form wG for some w ∈ Bm, and (wG)H = w(GH) = (0, . . . , 0).

So the matrix H can be used to test if an error has occurred in the
transmission of a code-word c → c′: if c′H 6= (0, . . . , 0), then an error was
made in the transmission.

2. Hamming codes: error-correcting matrices

In Hamming codes the matrix A is constructed in such a way that the
vector c′H not only signals that an error has occurred, but identifies the
erroneous bit. So H can correct the error as well as detecting it.

The scheme of check-bits in a Hamming code is derived from the binary
representation of the position of the bits being checked.

• Check-bit 1 is a parity check on all bits whose position number (in
binary) is of the form xxx1: bits in position 3 = 11, 5 = 101, 7 = 111,
etc.

• Check-bit 2 is a parity check on all bits whose position number is of
the form xx1x (has a 1 in next-to-last position): bits 3 = 11, 6 = 110,
7 = 111, etc.

• Check-bit 4 is a parity check on all bits whose position number is of
the form x1xx: bits 5 = 101, 6 = 110, 7 = 111, etc.

• This pattern can be extended to handle data words of arbitrary length.
Here we will consider data words of length 4, so these first three check
bits will suffice.

In order to implement the Hamming code by a matrix G as above, i.e.
where the check bits come after the data bits, we reorder the positions in the
code-word:

1 , 2 , 3, 4 , 5, 6, 7 → 3, 5, 6, 7, 4 , 2 , 1 .
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With that ordering, the matrix G implementing our 3 check-bits becomes

G =

















3 5 6 7 4 2 1

3 1 0 0 0 0 1 1
5 0 1 0 0 1 0 1
6 0 0 1 0 1 1 0
7 0 0 0 1 1 1 1

















,

where the row and column numbers have been written in for reference. We’ll
call this a Hamming matrix.

The corresponding H-matrix is

H =



























0 1 1
1 0 1
1 1 0
1 1 1
1 0 0
0 1 0
0 0 1



























.

If we feed a length-7 word c to H, it yields a 3-bit vector (a4, a2, a1)
where a1 = 0 if the column-1 parity check is verified, and a1 = 1 if that check
fails, and similarly for a2 and a4. This is because (c3, c5, c6, c7, c1, c2, c4)H =
(c5 + c6 + c7 + c4, c3 + c6 + c7 + c2, c3 + c5 + c6 + c1).

Looking back on how the special Hamming check-bits were constructed,
a1 = 1 means that an error occurred in one of the bits of c whose position
number ends with 1; a1 = 0 means that if an error occurred it was in one of the
other bits, those whose position number ends in 0. (We assume throughout
here that at most a single error occurred). So a1 tells us what the last bit of
the position number of the error is.

Similarly, a2 = 1 means that an error occurred in one of the bits whose
position number has middle bit 1, and a2 = 0 means that if an error occurred
it was in one of the other bits, those whose position number has middle bit
0. So a2 is equal to the middle bit of the position number of the error.

Finally, in exactly the same way, a4 is equal to the leading bit of the
position number of the error.

Put another way, the vector (a4, a2, a1), read as a binary number a4a2a1,
gives the location of the error. (If all three are 0, there was no error).
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3. Examples.

With the 4 × 7 Hamming-code matrix G, we encode (1, 0, 0, 1) as c =
(1, 0, 0, 1, 1, 0, 0). Suppose an error was made in the third bit, i.e. in position
6. So the transmitted word would be c′ = (1, 0, 1, 1, 1, 0, 0). Feeding c′ to H

yields c′H = (1, 1, 0) and the binary number 110 = 6. So c′ can be corrected
to (1, 0, 0, 1, 1, 0, 0), and the word correctly decoded as (1, 0, 0, 1).

Another example with the same matrix: we encode (0, 1, 0, 1) as (0, 1, 0, 1, 0, 1, 0).
Suppose an error is made in the fifth bit, i.e. in position 4 (this is a check bit,
but they also are subject to errors in transmission), so that the transmitted
word is c′ = (0, 1, 0, 1, 1, 1, 0). Applying H to this c′ yields c′H = (1, 0, 0)
and the binary number 100 = 4. So c′ can be corrected to (0, 1, 0, 1, 0, 1, 0),
and the word correctly decoded as (0, 1, 0, 1).

Anthony Phillips
Revised, 12/8/10.
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