My NAME is:

Problem	1	2	3	4	5	Total
Score						

MAT 312 Applied Algebra Midterm 2

November 2, 2010

No books or notes may be consulted during this test. You may use a PROGRAMMABLE GRAPHING CALCULATOR, BUT NO "COMPUTER ALGEBRA" SYSTEMS.

Explain your answers carefully.
Total score $=100$.

1. (a) (15 points) Solve the congruence equation

$$
40 x \equiv 3 \bmod 177
$$

(b) (15 points) Find all solutions to the congruence equation

$$
30 x \equiv 9 \bmod 177
$$

2. Reminder: The Chinese Remainder algorithm for the solution of a system of congruences:

$$
x \equiv a_{1} \bmod m_{1}, \quad x \equiv a_{2} \bmod m_{2}, \quad \ldots, \quad x \equiv a_{n} \bmod m_{n}
$$

where $m_{1}, m_{2}, \ldots, m_{n}$ are all relatively prime, is

$$
x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+\cdots+a_{n} M_{n} y_{n}
$$

where $M_{i}=m_{1} \cdots \hat{m}_{i} \cdots m_{n}$ (i.e. m_{i} has been left out of the product), and y_{i} is the multiplicative inverse of M_{i} modulo m_{i}.
(a) (15 points) Solve:

$$
\begin{aligned}
x & \equiv 1 \bmod 6 \\
x & \equiv 2 \bmod 7 \\
x & \equiv 3 \bmod 5
\end{aligned}
$$

(b) (5 points) Adapt the algorithm to solve

$$
\begin{aligned}
2 x & \equiv 2 \bmod 12 \\
x & \equiv 2 \bmod 7 \\
x & \equiv 3 \bmod 5
\end{aligned}
$$

3. (a) (10 points) Explain why if a is not divisible by 2 or by 5 , then $a^{4} \equiv 1 \bmod 10$.
(b) (10 points) What are the last three digits of 377^{400} ? Explain your work carefully!
4. Given the permutation

$$
\pi=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 5 & 8 & 4 & 6 & 1 & 3 & 9 & 7
\end{array}\right)
$$

(a) (10 points) calculate π^{3} and π^{-1} (Use "matrix" or cycle notation, as you prefer).
(b) (10 points) Write π as a product of disjoint cycles.
5. (10 points) Here is the mathematical center of the RSA algorithm: You know that $N=p q$ is the product of 2 large primes. A number x, which is smaller than p and smaller than q, has been encoded as $y=x^{a} \bmod N$. You know $\varphi(N)$, and that $(a, \varphi(N))=1$. Explain carefully how you get $x \bmod N$ back from y. Explain why the competition, even knowing N and a, cannot decode y.

END OF EXAMINATION

