My NAME is:

Problem	1	2	3	4	5	Total
Score						

MAT 312 Applied Algebra Midterm 1

October 5, 2010

No books or notes may be consulted during this test.
Explain your answers carefully.
Total score $=100$.

1. (15 points) Prove that $\sqrt{17}$ is not rational, by showing that it cannot be written as p / q with p and q integers, $(p, q)=1$. You may use the fact that every integer can be uniquely (up to order) written as a product of primes.
2. (20 points) Observe that $1=1^{2}, 1+3=2^{2}, 1+3+5=3^{2}$. Use induction to prove that the sum of the first n odd numbers is equal to n^{2}, i.e.

$$
1+3+\cdots+(2 n-1)=n^{2}
$$

3. (15 points) Observe that $1-1=0,1-2+1=0,1-3+3-1=0,1-4+6-4+1=0$. Prove that the alternating sum of the elements in the n-th row of Pascal's triangle is equal to 0 , i.e.

$$
\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots \pm\binom{ n}{n}=0
$$

4. (a) (10 points) Find the greatest common denominator d of 731 and 645.
(b) (10 points) Express d in the form $731 j+645 k$, with j and k integers.
(c) (10 points) Give prime factorizations for $81,82,83$.
5. (a) (10 points) Calculate the multiplicative inverse of 19 modulo 21.
(b) (10 points) Explain why 14 does not have a multiplicative inverse modulo 21.
