Math 310: Homework 7

These exercises are adapted from Hoffman and Kunze, Linear Algebra
Ex 1. Recall that a function from $n \times n$ matrices to \mathbb{F} is n-linear if it is linear in each row separately.

Each of the following expressions defines a function D on the set of 3×3 matrices over the set of real numbers. In which of these cases is D a 3 -linear function?
(a) $D(A)=A_{11}+A_{22}+A_{33}$
(b) $D(A)=\left(A_{11}\right)^{2}+3 A_{11} A_{22}$
(c) $D(A)=A_{11} A_{12} A_{33}$
(d) $D(A)=A_{13} A_{22} A_{32}+5 A_{12} A_{22} A_{32}$
(e) $D(A)=0$
(f) $D(A)=1$.

Ex 2. Let \mathbb{F} be a field. If A is a 2×2 matrix over \mathbb{F}, the classical adjoint of A is the 2×2 matrix $\operatorname{adj} A$ defined by

$$
\operatorname{adj} A=\left[\begin{array}{cc}
A_{22} & -A_{12} \\
-A_{21} & A_{11}
\end{array}\right] .
$$

Using $\operatorname{det} A=A_{11} A_{22}-A_{12} A_{21}$ as your definition of determinant, show that
(a) $(\operatorname{adj} A) A=A(\operatorname{adj} A)=(\operatorname{det} A) I$
(b) $\operatorname{det} \operatorname{adj} A=\operatorname{det} A$
(c) $\operatorname{adj}\left(A^{t}\right)=(\operatorname{adj} A)^{t}$, where A^{t}, the transpose of A, is defined by $A_{i j}^{t}=A_{j i}$: It is A flipped across its main diagonal.
Ex 3. Let A be a 2×2 matrix over a field \mathbb{F}. Show that A is invertible if and only if $\operatorname{det} A \neq 0$. (Use Exercise 2). When A is invertible, give a formula for A^{-1} : write out the entries explicitly.
Ex 4. Define a function D on the 3×3 matrices with coefficients in \mathbb{F} by

$$
D(A)=A_{11} \operatorname{det}\left[\begin{array}{ll}
A_{22} & A_{23} \\
A_{32} & A_{33}
\end{array}\right]-A_{12} \operatorname{det}\left[\begin{array}{ll}
A_{21} & A_{23} \\
A_{31} & A_{33}
\end{array}\right]+A_{13}\left[\begin{array}{ll}
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{array}\right] .
$$

Show that D is alternating and 3 -linear as a function of the columns of A.
Ex 5. Let D be an alternating n-linear function on the set of $n \times n$ matrices with coefficients in \mathbb{F}. Show that
(a) $D(A)=0$ if one of the rows of A is 0 .
(b) $D(B)=D(A)$ if B is obtained from A by adding a scalar multiple of one row of A to another.
Ex 6. The characteristic polynomial of a square matrix A is $f_{A}(\lambda)=\operatorname{det}(\lambda I-A)$, and its characteristic equation is $f_{A}(\lambda)=0$. We have seen that the solutions of this equation are the eigenvalues of A. The object of this exercise is to prove, for
2×2 matrices, the Cayley-Hamilton Theorem: a matrix satisfies its own characteristic equation.
(a) Show that for a 2×2 matrix

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

the characteristic polynomial is $f_{A}(\lambda)=\lambda^{2}-\left(A_{11}+A_{22}\right) \lambda+\operatorname{det} A$.
(b) Show that $A^{2}-\left(A_{11}+A_{22}\right) A+(\operatorname{det} A) I=0$ where this " 0 " is the 2×2 matrix with all entries 0 .

