Math 310: Homework 4

Ex 1. (i) Let $L: V \rightarrow W$ be a linear map. Let w_{0} be an element of W. Let v_{0} be an element of V such that $L\left(v_{0}\right)=w_{0}$. Show that any solution of the equation $L(X)=w_{0}$ is of type $v_{0}+u$, where u is an element of the kernel of L.
Hint: You might find it easier to do (ii) and (iii) before (i)!
(ii) Consider the system of linear equations

$$
\begin{aligned}
2 x_{1}+3 x_{2}+2 x_{3} & =1 \\
x_{1}+x_{2}+x_{3} & =1 .
\end{aligned}
$$

Find a linear map $L: V \rightarrow W$ and element $w_{0} \in W$ such that the solution set of this system of equations can be identified with the set of vectors v such that $L v=w_{0}$.
(iii) Solve the equations in (ii) and express the solutions in the form $v_{0}+u$ as explained in (i).

Ex 2. Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix. Define the trace of A to be the sum of the diagonal elements, that is

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i} .
$$

(1) What is the dimension of the space of $n \times n$ traceless matrices (i.e., $\operatorname{tr}(A)=0$)?
(2) Show that the trace is a linear map of the space of $n \times n$ matrices into \mathbb{F}.
(3) If A, B are $n \times n$ matrices, show that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
(4) Prove that there are no matrices A, B such that

$$
A B-B A=I_{n}
$$

Hint: Part (3) is an exercise in using the double summation notation: if $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ then $A B=\left(c_{i k}\right)$ where $c_{i k}=\sum_{j} a_{i j} b_{j k}$. If you think of $c_{i k}$ as the dot product of the i th row of A with the k th col of B it is not so easy to see why the trace has this symmetry.

Ex 3. (i) Find the matrix of a nonzero linear map $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $L^{2}=0$.
(ii) Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map such that $L \neq 0$ but $L^{2}=0$. What are the dimensions of Null L and Range L ? Is there any relation between these two spaces? (Understanding this will help with the bonus question.)
(iii) Let $L: V \rightarrow V$ be a linear mapping such that $L^{2}=0$. Show that $I-L$ is invertible. (I is the identity mapping on V.)

Hint: Show that Null $(I-L)=\{0\}$. (There is another proof that finds an algebraic formula for the inverse. This argument works also when V is infinite dimensional.)

Bonus question 4. (i) Find a linear map $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $L^{2} \neq 0$ but $L^{3}=0$.
(ii) Is there a linear map $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $L^{3} \neq 0$ but $L^{4}=0$?

