## Math 310: Homework 3

If $v_{1}, \ldots, v_{n}$ are elements if a vectorspace $V$, we will use the notation $\operatorname{sp}\left(v_{1}, \ldots, v_{n}\right)$ for the subspace they span.

Ex 1. (i) Let $V$ be a real vector space with basis $v_{1}, v_{2}, v_{3}$. Construct a linear map $T: V \rightarrow W=\mathbb{R}^{2}$ that is surjective and has the property that $T\left(v_{1}+v_{2}-3 v_{3}\right)=0$.
(ii) Is it possible to construct a linear map with these properties if $W=\mathbb{R}^{3}$ ? Give an example, or explain why not.

Ex 2. (i) Let $U$ be a subspace of $V$, and suppose that $T: U \rightarrow W$ is a linear map. Show that it is always possible to extend $T$ to a linear map $T^{\prime}: V \rightarrow W$. i.e. show that there is a linear map $T^{\prime}: V \rightarrow W$ such that $T^{\prime}(u)=T(u)$ for all $u \in U$.
(ii) Suppose that $U=\operatorname{sp}\left(e_{1}, e_{2}\right) \subset \mathbb{R}^{5}=V, W=\mathbb{R}^{4}$ and that $T: U=\mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ is given by

$$
T\left(e_{1}\right)=\sum_{j=1}^{4} e_{j}, \quad T\left(e_{2}\right)=e_{1} .
$$

(Here $e_{1}, \ldots, e_{n}$ denotes the standard basis of $\mathbb{R}^{n}$; see p 27.)
(a) Since $T$ is a map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$, it is given by multiplication by a matrix $A$. Write down this matrix $A$.
(b) Write down a matrix for $T^{\prime}$. Choose this matrix so that $T^{\prime}$ is injective (if possible) and surjective (if possible). Explain your answer.
(iii) Now go back to the general problem in (i). Under what conditions on $U, V, W, T$ can you choose $T^{\prime}$ to be injective? Under what conditions can you choose $T^{\prime}$ to be surjective? Give the most general conditions you can find.

Ex 3. Suppose that $T: V \rightarrow W$ is a linear map and that $v_{1}, \ldots, v_{n}$ is a basis for $V$. Suppose that the list $T v_{1}, \ldots, T v_{n}$ is linearly dependent in $W$. Show that $T$ is not injective.
Note: For this question, you may use any result in the book up to and including Theorem 3.4.

Ex 4. (i) Prove that there does not exist a linear map $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{2}$ with null space equal to

$$
\left\{\left(x_{1}, \ldots, x_{6}\right): x_{1}+x_{2}+x_{3}=0, x_{2}=-x_{4}=x_{6}\right\} .
$$

(ii) Give the matrix of a linear map $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{2}$ with null space

$$
\left\{\left(x_{1}, \ldots, x_{6}\right): x_{1}+x_{2}+x_{3}=0, x_{2}=-x_{4}\right\}
$$

We saw in class that the space $\mathcal{L}(V, W)$ of linear maps from $V$ to $W$ is always a vector space. Take $W=\mathbb{F}$. We then get the space $V^{*}:=\mathcal{L}(V, \mathbb{F})$ of $\mathbb{F}$-linear maps
$V \rightarrow \mathbb{F}$. This is called the dual space of $V$. The next two exercises ask you to explore its structure.

Ex 5. Let $V=\mathbb{F}^{2}$ with basis $e_{1}, e_{2}$. Define elements $e_{1}^{*}, e_{2}^{*} \in V^{*}$ by:

$$
e_{1}^{*}\left(e_{1}\right)=1, e_{1}^{*}\left(e_{2}\right)=0, \quad e_{2}^{*}\left(e_{1}\right)=0, e_{2}^{*}\left(e_{2}\right)=1
$$

Show that $e_{1}^{*}, e_{2}^{*}$ form a basis for $V^{*}$. Deduce that $\operatorname{dim}\left(\mathbb{F}^{2}\right)^{*}=2$.
Bonus ex 6: (i) Show that if $V$ is a vector space of dimension $n$ then $V^{*}$ also has dimension $n$.
(ii) If $V$ has infinite dimension then so does $V^{*}$. However, even if we have a basis for $V$ it is not easy to define a basis for $V^{*}$. For example suppose that $V$ is the set of infinite sequences that are eventually 0 :

$$
V:=\left\{\left(x_{1}, x_{2}, x_{3}, \ldots\right): x_{i} \neq 0 \text { for only finitely many } i\right\} .
$$

Then $V$ has the basis $e_{i}, i \in \mathbb{N}$, where $e_{i}$ has 1 in the $i$ th place and zeros elsewhere. As before we can define $e_{i}^{*} \in V^{*}$ which equals 1 on $e_{i}$ and 0 on all other $e_{j}$. Find an element of $V^{*}$ that is NOT in $\operatorname{sp}\left(e_{1}, e_{2}, e_{3}, \ldots\right)$.

