MAT 310 Spring 2008 Homework 1

1. (i) Calculate (with answers in the form z = a + ib)

$$(1+i)^2$$
, $(1+i)^4$.

Draw a diagram of these points on the plane.

(ii) Find z = a + ib with a, b > 0 such that $z^8 = 1$.

In the following exercises, let V be a vector space over \mathbf{F} (where $\mathbf{F} = \mathbf{R}$ or \mathbf{C} .) You may use any proposition from Chapter 1 provided that you say explicitly where it is used.

- 2. (i) Let v, w ∈ V be such that v + w = v. Show that w = 0.
 (ii) Let v ∈ V and a ∈ F be such that av = 0. Show that one of a or v must be zero.
 (iii) Let v ∈ V and a ∈ F be such that av = v. Show that one of a = 1 or v = 0.
- 3. For each of the following subsets U of \mathbb{R}^3 , determine whether it is a subspace of \mathbb{R}^3 . If U is a subspace, find W such that $U \oplus W = \mathbb{R}^3$. Explain your answer carefully.
 - (a) $\{(x_1, x_2, x_3) \in \mathbf{R}^3 : x_1 2x_2 + x_3 = 1\}.$
 - (b) $\{(x_1, x_2, x_3) \in \mathbf{R}^3 : (x_1)^2 x_2 + x_3 = 0\}.$
 - (c) $\{(x_1, x_2, x_3) \in \mathbf{R}^3 : x_1 x_2 = 3x_3\}.$
- 4. Give an example of a subset U of \mathbf{R}^2 that is closed under addition and taking additive inverses, but is not a vector space over \mathbf{R} .
- 5. Let $\mathcal{P}_2(\mathbf{R})$ be the space of polynomials in x of degree at most 2 with real cofficients. Thus $\mathcal{P}_2(\mathbf{R}) = \{a + bx + cx^2 : a, b, c, \in \mathbf{R}\}.$

(i) Give an example of a subset U of $\mathcal{P}_2(\mathbf{R})$ that is closed under multiplication by scalars but is not a subspace.

(ii) Give an example of a subspace U of $\mathcal{P}_2(\mathbf{R})$ that is *proper*, i.e. not equal to $\{0\}$ or to the whole space $\mathcal{P}_2(\mathbf{R})$.

(iii) For the subspace U you found in (ii), identify another subspace W such that $\mathcal{P}_2(\mathbf{R}) = U \oplus W$.

- 6. Are there subspaces U_1, U_2, W of \mathbb{R}^2 such that $U_1 \oplus W = U_2 \oplus W$ but $U_1 \neq U_2$? Give an example or prove that no such subspaces exist.
- 7. (Bonus problem) (i) Suppose that U_1, U_2, U_3 are subspaces of V such that $V = U_1 + U_2 + U_3$. Formulate a condition in terms of intersections of subspaces that is equivalent to the condition that $V = U_1 \oplus U_2 \oplus U_3$.
 - (ii) The same question for k-fold sums.