MAT 310 Spring 2008 Homework 1

1. (i) Calculate (with answers in the form $z=a+i b$)

$$
(1+i)^{2}, \quad(1+i)^{4}
$$

Draw a diagram of these points on the plane.
(ii) Find $z=a+i b$ with $a, b>0$ such that $z^{8}=1$.

In the following exercises, let V be a vector space over \mathbf{F} (where $\mathbf{F}=\mathbf{R}$ or \mathbf{C}.) You may use any proposition from Chapter 1 provided that you say explicitly where it is used.
2. (i) Let $v, w \in V$ be such that $v+w=v$. Show that $w=0$.
(ii) Let $v \in V$ and $a \in \mathbf{F}$ be such that $a v=0$. Show that one of a or v must be zero.
(iii) Let $v \in V$ and $a \in \mathbf{F}$ be such that $a v=v$. Show that one of $a=1$ or $v=0$.
3. For each of the following subsets U of \mathbf{R}^{3}, determine whether it is a subspace of \mathbf{R}^{3}. If U is a subspace, find W such that $U \oplus W=\mathbf{R}^{3}$. Explain your answer carefully.
(a) $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3}: x_{1}-2 x_{2}+x_{3}=1\right\}$.
(b) $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3}:\left(x_{1}\right)^{2}-x_{2}+x_{3}=0\right\}$.
(c) $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3}: x_{1}-x_{2}=3 x_{3}\right\}$.
4. Give an example of a subset U of \mathbf{R}^{2} that is closed under addition and taking additive inverses, but is not a vector space over \mathbf{R}.
5. Let $\mathcal{P}_{2}(\mathbf{R})$ be the space of polynomials in x of degree at most 2 with real cofficients. Thus $\mathcal{P}_{2}(\mathbf{R})=\left\{a+b x+c x^{2}: a, b, c, \in \mathbf{R}\right\}$.
(i) Give an example of a subset U of $\mathcal{P}_{2}(\mathbf{R})$ that is closed under multiplication by scalars but is not a subspace.
(ii) Give an example of a subspace U of $\mathcal{P}_{2}(\mathbf{R})$ that is proper, i.e. not equal to $\{0\}$ or to the whole space $\mathcal{P}_{2}(\mathbf{R})$.
(iii) For the subspace U you found in (ii), identify another subspace W such that $\mathcal{P}_{2}(\mathbf{R})=U \oplus W$.
6. Are there subspaces U_{1}, U_{2}, W of \mathbf{R}^{2} such that $U_{1} \oplus W=U_{2} \oplus W$ but $U_{1} \neq U_{2}$? Give an example or prove that no such subspaces exist.
7. (Bonus problem) (i) Suppose that U_{1}, U_{2}, U_{3} are subspaces of V such that $V=U_{1}+$ $U_{2}+U_{3}$. Formulate a condition in terms of intersections of subspaces that is equivalent to the condition that $V=U_{1} \oplus U_{2} \oplus U_{3}$.
(ii) The same question for k-fold sums.

