MAT 310 Spring 2008 Review for Final Exam

Theorems from Axler, 2nd Ed. you should know how to use and how to prove.
$2.18 \operatorname{dim}\left(U_{1}+U_{2}\right)=\operatorname{dim} U_{1}+\operatorname{dim} U_{2}-\operatorname{dim}\left(U_{1} \cap U_{2}\right)$.
3.17 $T: V \rightarrow U$ is invertible $\Leftrightarrow T$ injective and surjective.
3.18 Two finite-dimensional vector spaces over the same field \mathbf{F} are isomorphic \Leftrightarrow they have the same dimension.
5.10 V finite-dimensional over \mathbf{C} : every operator $T: V \rightarrow V$ has an eigenvalue. Assume Fundamental Theorem of Algebra!
5.13 V finite-dimensional over $\mathbf{C}, T: V \rightarrow V, V$ has a basis \mathcal{B} such that the matrix $[T]_{\mathcal{B}}$ is upper-triangular.
5.18 If $[T]_{\mathcal{B}}$ is upper-triangular, the diagonal elements of $[T]_{\mathcal{B}}$ are the eigenvalues of T.
6.6 Cauchy-Schwarz inequality.
6.9 Triangle inequality.
6.20 Gram-Schmidt orthonormalization.
6.28 Every finite-dimensional inner-product space has an orthonormal basis.
6.xx V finite-dimensional over $\mathbf{C}, T: V \rightarrow V, V$ has an orthonormal basis \mathcal{B} such that the matrix $[T]_{\mathcal{B}}$ is upper-triangular.
$6.33\left(U^{\perp}\right)^{\perp}=U$
6.45 V a finite-dimensional inner-product space. Every $\varphi: v \rightarrow \mathbf{F}$ is of the form $\varphi(v)=\left\langle v, w_{\varphi}\right\rangle$.
6.47 If \mathcal{B} is an orthonormal basis, and T^{*} is the adjoint of $T,\left[T^{*}\right]_{\mathcal{B}}=\overline{[T]_{\mathcal{B}}^{t}}$ the complex conjugate transpose.
6.46 null $T^{*}=(\text { range } T)^{\perp}$, etc.
7.1 Every eigenvalue of a self-adjoint operator is real.
7.2 If $T: V \rightarrow V, \mathrm{~V}$ a \mathbf{C}-vector space, and $\langle T v, v\rangle=0$ for every $v \in V$, then $T=0$.
7.6 T is normal $\Leftrightarrow\|T v\|=\left\|T^{*} v\right\|$ for every $v \in V$.
7.9 C-Spectral Theorem.
7.36ab (Characterization of isometry): T preserves norms $\Leftrightarrow T$ preserves inner products.
7.37 $T: V \rightarrow V, V$ a C-vector space. T is an isometry $\Leftrightarrow V$ has an orthonormal basis of T-eigenvectors with associated eigenvalues all having absolute value equal to one.
8.5 $T: V \rightarrow V$. If null $T^{m}=$ null T^{m+1} then null $T^{m+1}=$ null $T^{m+2}=$ etc.
8.6 $T: V \rightarrow V, \operatorname{dim} V=n$. null $T^{n}=$ null T^{n+1}.
8.20 Cayley-Hamilton Theorem for operators on C-vector spaces.
8.23 $T: V \rightarrow V, V$ a \mathbf{C}-vector space. Let $\lambda_{1}, \ldots, \lambda_{m}$ be the distinct eigenvalues, and U_{1}, \ldots, U_{m} the associated generalized eigenspaces. Then $V=U_{1} \oplus \cdots \oplus U_{m}$, the subspace U_{j} is T-invariant for $j=1, \ldots, m$ and $\left.\left(T-\lambda_{j} I\right)\right|_{U_{j}}$ is nilpotent.
8.26 If $T: V \rightarrow V$ is nilpotent, then V has a basis \mathcal{B} such that $[T]_{\mathcal{B}}$ has only zeros on or below the diagonal.

