Theorems from *Axler*, *2nd Ed.* you should know how to use **and how to prove**.

- **2.18** dim $(U_1 + U_2)$ = dim U_1 + dim U_2 dim $(U_1 \cap U_2)$.
 - 3.17 $T: V \to U$ is invertible $\Leftrightarrow T$ injective and surjective.
 - 3.18 Two finite-dimensional vector spaces over the same field \mathbf{F} are isomorphic \Leftrightarrow they have the same dimension.
- **5.10** V finite-dimensional over C: every operator $T: V \to V$ has an eigenvalue. Assume Fundamental Theorem of Algebra!
- **5.13** V finite-dimensional over \mathbf{C} , $T : V \to V$, V has a basis \mathcal{B} such that the matrix $[T]_{\mathcal{B}}$ is upper-triangular.
- **5.18** If $[T]_{\mathcal{B}}$ is upper-triangular, the diagonal elements of $[T]_{\mathcal{B}}$ are the eigenvalues of T.
 - 6.6 Cauchy-Schwarz inequality.
 - 6.9 Triangle inequality.
- 6.20 Gram-Schmidt orthonormalization.
- 6.28 Every finite-dimensional inner-product space has an orthonormal basis.
- 6.xx V finite-dimensional over $\mathbf{C}, T: V \to V, V$ has an orthonormal basis \mathcal{B} such that the matrix $[T]_{\mathcal{B}}$ is upper-triangular.
- 6.33 $(U^{\perp})^{\perp} = U$
- 6.45 V a finite-dimensional inner-product space. Every $\varphi : v \to \mathbf{F}$ is of the form $\varphi(v) = \langle v, w_{\varphi} \rangle$.
- **6.47** If \mathcal{B} is an orthonormal basis, and T^* is the adjoint of T, $[T^*]_{\mathcal{B}} = \overline{[T]_{\mathcal{B}}^t}$ the complex conjugate transpose.
 - 6.46 null $T^* = (\text{range } T)^{\perp}$, etc.

- 7.1 Every eigenvalue of a self-adjoint operator is real.
- 7.2 If $T: V \to V$, V a C-vector space, and $\langle Tv, v \rangle = 0$ for every $v \in V$, then T = 0.
- **7.6** T is normal $\Leftrightarrow ||Tv|| = ||T^*v||$ for every $v \in V$.
- 7.9 C-Spectral Theorem.
- 7.36ab (Characterization of isometry): T preserves norms \Leftrightarrow T preserves inner products.
 - 7.37 $T: V \to V$, V a C-vector space. T is an isometry $\Leftrightarrow V$ has an orthonormal basis of T-eigenvectors with associated eigenvalues all having absolute value equal to one.
 - 8.5 $T: V \to V$. If null T^m = null T^{m+1} then null T^{m+1} = null T^{m+2} = etc.
 - 8.6 $T: V \to V$, dim V = n. null $T^n =$ null T^{n+1} .
- 8.20 Cayley-Hamilton Theorem for operators on C-vector spaces.
- **8.23** $T: V \to V, V$ a **C**-vector space. Let $\lambda_1, \ldots, \lambda_m$ be the *distinct* eigenvalues, and U_1, \ldots, U_m the associated generalized eigenspaces. Then $V = U_1 \oplus \cdots \oplus U_m$, the subspace U_j is *T*-invariant for $j = 1, \ldots, m$ and $(T \lambda_j I)|_{U_j}$ is nilpotent.
- **8.26** If $T: V \to V$ is nilpotent, then V has a basis \mathcal{B} such that $[T]_{\mathcal{B}}$ has only zeros on or below the diagonal.