MAT 310 Linear Algebra Midterm 2 Solutions

1. Write a complete, clear and correct proof of the following statement: Given v_{1} and v_{2} eigenvectors of a linear operator; if their associated eigenvalues are different, then v_{1} and v_{2} are linearly independent.

Solution. (This is an abridged version of a proof in the book). Let $\lambda_{1} \neq \lambda_{2}$ be the corresponding eigenvalues. If T is the operator, then $T v_{1}=\lambda_{1} v_{1}$ and $T v_{2}=\lambda_{2} v_{2}$. Suppose a linear relation $a_{1} v_{1}+a_{2} v_{2}=0$. Since v_{1} and v_{2}, being eigenvectors, are not zero, both a_{1} and a_{2} are nonzero. Then for example $v_{1}=-\frac{a_{2}}{a_{1}} v_{2}$. so $T v_{1}=-\frac{a_{2}}{a_{1}} T v_{2}=-\frac{a_{2}}{a_{1}} \lambda_{2} v_{2}$; on the other hand, $T v_{1}=\lambda_{1} v_{1}=-\frac{a_{2}}{a_{1}} \lambda_{1} v_{2}$. Since everything else is nonzero, λ_{1} must equal λ_{2}, a contradiction. So there is no such linear relation, and v_{1}, v_{2} are linearly independent.
2. Consider the linear operator T defined in the standard basis $(1,0),(0,1)$ by the matrix

$$
\left[\begin{array}{cc}
11 & -4 \\
30 & -11
\end{array}\right]
$$

Take $v=(1,0)$ and note that $T(v)=(11,30)$ and $T^{2}(v)=(1,0)$, so T satisfies the equation $\left(T^{2}-I\right) v=0$. Factor $T^{2}-I$ as $(T-a I)(T-b I)$. When you have calculated a and b, apply $(T-b I)$ and then $(T-a I)$ to v to obtain an eigenvector for T, as in the proof in the text that every operator on a complex vector space has an eigenvector.

Solution. The polynomial $x^{2}-1$ factors as $(x+1)(x-1)$, so $T^{2}-I=$ $(T+I)(T-I)$, giving $a=-1, b=1$ in the statement of the problem. If we apply

$$
T-I=\left[\begin{array}{cc}
10 & -4 \\
30 & -12
\end{array}\right]
$$

to $v=(1,0)$ we get $(10,30)$. This is an eigenvector, with eigenvalue -1 as can be checked. (If we applied

$$
T+I=\left[\begin{array}{cc}
12 & -4 \\
30 & -10
\end{array}\right]
$$

instead, we would get $(12,30)$, an eigenvector with eigenvalue 1.) Similar analysis for the other form of this problem, where $v=(0,1)$.
3. Give an example of a linear operator on \mathbf{R}^{2} which is not diagonalizable but can be put in upper- triangular form.

Solution. Suppose T is an operator which with respect to some basis is in upper-triangular form, with matrix

$$
\left[\begin{array}{ll}
a & c \\
0 & b
\end{array}\right] .
$$

We know that the diagonal entries are eigenvalues of T, and that if they are distinct the corresponding eigenvectors are linearly independent; using those eigenvectors as basis gives a diagonal matrix. So a and b must be equal. If $c=0$ then our matrix is diagonal. So take for example

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

We check this matrix is not diagonalizable. The only eigenvalue is 1 ; a possible eigenvector must satisfy

$$
A\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+y \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

The first components give $x+y=x$ so $y=0$. So any eigenvector is a multiple of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$. There cannot be two linearly independent vectors, so this transformation is not diagonalizable.

