MAT 310 Linear Algebra Midterm 1 Solutions

1. Write a complete, clear and correct proof of the following statement: If a list $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of elements of a vector space is linearly dependent, and $v_{1} \neq 0$, then one of them can be written as a linear combination of those preceding it in the list. (I.e. for some $j, 1 \leq j \leq n$, there are field elements c_{1}, \ldots, c_{j-1} such that $\left.v_{j}=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{j-1} v_{j-1}\right)$.

Solution. This was straight out of the book.
2. Given vector spaces V, W with $\operatorname{dim} V=7$ and $\operatorname{dim} W=6$. Prove that there is no injective map $T: V \rightarrow W$.

Solution. Let $\left(v_{1}, \ldots, v_{7}\right)$ be a basis for V. If T is injective, the vectors $T v_{1}, T v_{2}, \ldots, T v_{7}$ must be linearly independent (because if $a_{1} T v_{1}+\cdots+$ $a_{7} T v_{7}=0$, with not all $a_{i}=0$, then $v=a_{1} v_{1}+\cdots+a_{7} v_{7}$ is $\neq 0$, but $T v=0$, contradicting injectivity). But W has a 6 -element spanning set, so it cannot contain a 7 -element linearly independent list.
3. Note that there were several different forms of this problem. Let $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ be defined by
$T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(2 x_{2}-x_{3}-x_{4}, 2 x_{1}+x_{3}+x_{4}, x_{1}-x_{2}+2 x_{3}+x_{4}, x_{1}+x_{2}-x_{3}\right)$.
Give a basis for the range of T and a basis for the null-space of T.
Solution. Use the standard basis $e_{1}=(1,0,0,0), e_{2}=(0,1,0,0), e_{3}=$ $(0,0,1,0), e_{4}=(0,0,0,1)$, and note that $T e_{1}, T e_{2}, T e_{3}, T e_{4}$ span the range of T (since $w \in \operatorname{range}(T) \Longleftrightarrow w=T v$ for some $v=a_{1} e_{1}+$ $\ldots+a_{4} e_{4} \in V$, which makes $w=T\left(a_{1} e_{1}+\ldots+a_{4} e_{4}\right)=a_{1} T e_{1}+\ldots+$ $a_{4} T e_{4}$. So to get a basis for the range of T we go through the list $T e_{1}, T e_{2}, T e_{3}, T e_{4}$ discarding any vector which is a linear combination of the preceding ones.
Now $T e_{1}=(0,2,1,1), T e_{2}=(2,0,-1,1), T e_{3}=(-1,1,2,-1), T e_{4}=$ $(-1,1,1,0)$. We note that $T e_{2}$ cannot be a multiple of $T e_{1}$, since it has a non-zero first component. Is $T e_{3}$ a linear combination of $T e_{1}$ and $T e_{2}$? Try

$$
(-1,1,2,-1)=a(0,2,1,1)+b(2,0,-1,1)
$$

This gives four equations: $-1=2 b, 1=2 a, 2=a-b,-1=a+b$. the first says $b=-\frac{1}{2}$, the second says $a=\frac{1}{2}$ but then $a+b=0$, contradicting equation 4 . So there are no a and b that work, and $T e_{1}$, $T e_{2}$ and $T e_{3}$ are linearly independent. Now try the same thing with $T e_{1}, T e_{2}, T e_{3}$ and $T e_{4}$: write

$$
(-1,1,1,0)=a(0,2,1,1)+b(2,0,-1,1)+c(-1,1,2,-1) .
$$

The four equations are now: $-1=2 b-c, 1=2 a+c, 1=a-b+2 c, 0=$ $a+b-c$. Adding equations 1 and 2 gives $2 a+2 b=0$ or $b=-a$. Then equation 4 gives $c=0$, equation 1 gives $b=-\frac{1}{2}$, equation 2 gives $a=\frac{1}{2}$ and equation 3 checks out $1=1$. So $(-1,1,1,0)=\frac{1}{2}(0,2,1,1)-$ $\frac{1}{2}(2,0,-1,1)$, and $T e_{4}$ is not independent of the preceding vectors. So $T e_{1}, T e_{2}$ and $T e_{3}$ are a basis for the range of T.

We now know that the null space of T is 1-dimensional, so it is enough to find one nonzero v with $T v=0$. This means finding a non-zero solution of

$$
\begin{gather*}
2 x_{2}-x_{3}-x_{4}=0 \tag{1}\\
2 x_{1}+x_{3}+x_{4}=0 \tag{2}\\
x_{1}-x_{2}+2 x_{3}+x_{4}=0 \tag{3}\\
x_{1}+x_{2}-x_{3}=0 \tag{4}
\end{gather*}
$$

Adding (1) to (2) gives $2 x_{1}+2 x_{2}=0$ so $x_{1}=-x_{2}$. Then (4) gives $x_{3}=0$. We can choose x_{1} arbitrarily, say $x_{1}=1$. Then $x_{2}=-1$, $x_{3}=0$ and $x_{4}=2 x_{2}$ by $(1)=-2$. A 1 -vector basis of the null-space of T is $(1,-1,0,-2)$.

