Problem	1	2	3	Total
Score				

MAT 310 Linear Algebra Midterm 2

November 17, 2008

No books or notes may be consulted during this test.
Explain your answers carefully. Show all your work in the "yellow book." Total score $=100$.

1. We know $\left(^{*}\right)$ that any invertible matrix can be written as a product of elementary matrices.
(a) (10 points) Show that

$$
A=\left[\begin{array}{ll}
6 & 5 \\
5 & 4
\end{array}\right]
$$

is invertible. Explain carefully.
(b) (20 points) Express A as a product of elementary matrices.
(c) (15 points) Suppose E is an elementary $n \times n$ matrix of type $1, F$ is an elementary $n \times n$ matrix of type $2, G$ is an elementary $n \times n$ matrix of type 3 and M is an arbitrary invertible $n \times n$ matrix. How are the determinants $\operatorname{det} E M$, $\operatorname{det} F M$ and $\operatorname{det} G M$ related to $\operatorname{det} M$? You may use only the following properties of the determinant:

- If all the rows of a matrix M are fixed except one, $\operatorname{det}(M)$ is linear as a function of the variable row.
- If a multiple of one row is added to another row, det does not change.
- If two rows are interchanged, det changes sign.

2. (15 points) Calculate the determinant

$$
\operatorname{det}\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 \\
5 & 4 & 3 & 2
\end{array}\right]
$$

3. Let \mathcal{P}_{2} represent the vector space of polynomials $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$, with a_{0}, a_{1}, a_{2} real numbers, and let $L: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ be defined by $L(p)(x)=x p^{\prime}(x)+p(x)$, where p^{\prime} is the derivative of p.
(a) (20 points) Prove carefully that L is a linear transformation.
(b) (10 points) What is the matrix $[L]_{\beta}^{\beta}$ of L with respect to the basis $\beta=\left(1, x, x^{2}\right)$ for \mathcal{P}_{2} ?
(c) (10 points) \mathcal{P}_{2} also has the basis $\gamma=\left(x+x^{2}, 1+x^{2}, 1+x\right)$. Show that $[L]_{\beta}^{\beta}$ and $[L]_{\gamma}^{\gamma}$ must have the same determinant. You may use the properties of determinant mentioned above, along with $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

END OF EXAMINATION

