Problem	1	2	3	4	5	Total
Score						

MAT 310
 Linear Algebra Midterm 1

October 13, 2008

No books or notes may be consulted during this test.
Explain your answers carefully. Show all your work in the "yellow book."
Total score $=100$. Each part of each question is worth 10 points.

1. (a) In the vector space \mathbf{R}^{4}, is the vector $(-1,1,1,2)$ in the span of the vectors $(1,0,1,-1)$ and $(0,1,1,1)$?
(b) In the vector space $M_{2 \times 2}(\mathbf{R})$, i.e. 2 by 2 matrices with real entries, addition and scalar multiplication defined AS USUAL by

$$
\begin{gathered}
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)+\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)=\left(\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right) \\
c \cdot\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)=\left(\begin{array}{ll}
c a_{11} & c a_{12} \\
c a_{21} & c a_{22}
\end{array}\right)
\end{gathered}
$$

is the set

$$
\left\{\left(\begin{array}{rr}
1 & 0 \\
-2 & 1
\end{array}\right),\left(\begin{array}{rr}
0 & -1 \\
1 & 1
\end{array}\right),\left(\begin{array}{rr}
-1 & 2 \\
1 & 0
\end{array}\right),\left(\begin{array}{rr}
2 & 1 \\
-4 & 4
\end{array}\right)\right\}
$$

linearly independent?
2. (a) Prove that in \mathbf{R}^{4} the set S of vectors $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ satisfying $3 v_{1}+v_{2}-v_{3}-5 v_{4}=0$ is a subspace.
(b) Prove that S has dimension 3.
3. (a) Let $\mathcal{C}([0,2])$ represent the vector space of continuous functions defined on the interval $[0,2]$, and consider the function $T: \mathcal{C}([0,2]) \rightarrow \mathbf{R}$ given by

$$
T(f)=\int_{0}^{1} f(x) d x-\int_{1}^{2} f(x) d x
$$

Is T a linear transformation? Explain in detail.
(b) With $M_{2 \times 2}(\mathbf{R})$ as above, let $S: M_{2 \times 2}(\mathbf{R}) \rightarrow M_{2 \times 2}(\mathbf{R})$ be defined by $S(A)=2 A+I$, where I is the 2×2 identity matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
Is S a linear transformation? Explain in detail.
4. The linear transformation $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ given with respect to the standard basis (in both $\mathbf{R}^{4} \mathrm{~s}$) by the matrix

$$
\left(\begin{array}{rrrr}
4 & 3 & 2 & 1 \\
-1 & 0 & 1 & -1 \\
3 & 1 & -1 & 2 \\
-2 & -2 & -2 & 0
\end{array}\right)
$$

has rank 2 and nullity 2 .
(a) Give a basis for the range of T.
(b) Give a basis for the null-space of T.
5. Given matrices

$$
A=\left(\begin{array}{rrr}
1 & -1 & 2 \\
-2 & 1 & 2
\end{array}\right), \quad B=\left(\begin{array}{rr}
3 & -1 \\
-2 & 1 \\
1 & -1
\end{array}\right)
$$

(a) Calculate the matrix product $A B$.
(b) Calculate the matrix product $B A$.

END OF EXAMINATION

