MAT 200

SOLUTIONS TO HOMEWORK 9

Section 5.2: 3, 5, 13
3 (a) Suppose $A \cap A^{\prime}$ is not empty. Then there exists a $x \in A \cap A^{\prime}$. So x must be $x \in A$ and $x \in A^{\prime}$. But $x \in A^{\prime}$ means $x \notin A$, and this is a contradiction since we have $x \in A$ and $x \notin A$.
(b) Since the universal set contains A, A^{\prime}, it also contains their union: $A \cup A^{\prime} \subseteq U$.

Now for the reverse inclusion, let $x \in U$. Since any element is either in or not in A, $x \in A$ or $x \in A^{\prime}$. So $x \in A \cup A^{\prime}$. So we have established $x \in U \leftrightarrow x \in A \cup A^{\prime}$. By UG we have $U=A \cup A^{\prime}$.

5 (a) Suppose $x \in A$. Then $x \in A$ or $x \in B$ (tautology). So $x \in A \cup B$.
(c) Suppose $x \in A \cap B$. Then $x \in A$ and $x \in B$. So $x \in A$. By UG we have $A \cap B \subseteq A$.

13 When doing proof by cases, we need to check that the cases we consider cover all possibilities, i.e., at least one of them always holds. In this proof, it is false: neither case covers possibility $x=b$. In fact, the statement itself is false: $(a, b) \cup(b, c) \neq(a, c)$ because $b \in(a, c)$ but $b \notin(a, b) \cup(b, c)$.

Section 5.3: 1 a,e, 7, 11

$1 \mathbf{a}, \mathbf{e}$ (a) $\mathcal{P}(\{1,2,3\})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}$
(e) Since $\mathcal{P}(\{1,3\})=\{\emptyset,\{1\},\{3\},\{1,3\}\}$, subtracting this from a) we get $\{\{2\},\{1,2\},\{2,3\},\{1,2,3\}\}$.

7 By definition,

$$
\begin{aligned}
x \in & B \cap\left(\bigcup A_{i}\right) \leftrightarrow(x \in B) \wedge\left(x \in \bigcup A_{i}\right) \\
& \leftrightarrow(x \in B) \wedge\left(\exists i x \in A_{i}\right) \\
& \leftrightarrow \exists i(x \in B) \wedge\left(x \in A_{i}\right) \quad \text { By Law of logic (18) on p. } 102 \\
& \leftrightarrow \exists i x \in\left(B \cap A_{i}\right) \leftrightarrow\left(x \in \cup\left(B \cap A_{i}\right)\right)
\end{aligned}
$$

Alternative proof:
Forward direction: assume $x \in B \cap\left(\bigcup A_{i}\right)$. Then $x \in B$ and $\exists i x \in A_{i}$. Let i_{0} be such a value of i, so that $x \in A_{i_{0}}$. Then $x \in\left(B \cap A_{i_{0}}\right)$, so $\exists i x \in\left(B \cap A_{i}\right)$, which is equivalent to $x \in \bigcup\left(B \cap A_{i}\right)$.

Reverse direction: assume $x \in \bigcup\left(B \cap A_{i}\right)$. Then $\exists i x \in\left(B \cap A_{i}\right)$. Let i_{0} be such a vlaue of i, so that $x \in\left(B \cap A_{i_{0}}\right)$. Then $x \in B$ and $x \in A_{i_{0}}$. Thus, $x \in \bigcup A_{i}$. Since we also have $x \in B$, it means that $x \in B \cap\left(\bigcup A_{i}\right)$.
$11 A_{1}=\left[2^{-1}, 2^{0}\right)=\left[\frac{1}{2}, 1\right) . A_{1} \cup A_{2}=\left[\frac{1}{4}, 1\right), A_{1} \cup A_{2} \cup A_{3}=\left[\frac{1}{8}, 1\right)$.
Repeating this, we can prove that

$$
A_{1} \cup \cdots \cup A_{n}=\left[\frac{1}{2^{n}}, 1\right)
$$

Now we claim that

$$
\bigcup_{n=1}^{n=\infty} A_{n}=(0,1)
$$

Indeed: if $x \in \bigcup_{n=1}^{n=\infty} A_{n}$, then $x \in\left[\frac{1}{2^{n}}, \frac{1}{2^{n-1}}\right)$ for some n, so $0<x<1$. Thus, $\bigcup_{n=1}^{n=\infty} A_{n} \subseteq$ $(0,1)$. In particular, 0 is excluded because $0 \notin A_{n}$ for any n.

Conversely, let $0<x<1$. Since $\lim \frac{1}{2^{n}}=0$, it means that there exists n such that $\frac{1}{2^{n}}<x<1$. Thus, $\exists n x \in A_{1} \cup \cdots \cup A_{n}$. Thus, $x \in \bigcup_{n=1}^{n=\infty} A_{n}$. This shows that $(0,1) \subseteq \bigcup_{n=1}^{n=\infty} A_{n}$.

Combining these two steps, we see that

$$
\bigcup_{n=1}^{n=\infty} A_{n}=(0,1)
$$

So

$$
[0,1]-\bigcup_{n=1}^{n=\infty} A_{n}=\{0,1\}
$$

NOTE: just writing $A_{1} \cup \cdots \cup A_{n}=\left[\frac{1}{2^{n}}, 1\right)$ and saying "let us take limit as $n \rightarrow \infty$ " is not a legal proof. To do it, you firts need to explain what a limit of a sequence of sets is - which we never did, and have no intention of doing. The definition of infinite union did not involve any limits.

Section 6.1: 4 abe, 5

4 If we denote by $|M|$ the number of elements in set M, then by Theorem 5.8, the number of elements in $\mathcal{P}(M)$ is $2^{|M|}$.
(a) $|A \times B|=2 \times 3=6$, so $|\mathcal{P}(A \times B)|=2^{6}$.
(b) $|\mathcal{P}(A) \times \mathcal{P}(B)|=|\mathcal{P}(A)| \times|\mathcal{P}(B)|=2^{3} \times 2^{2}=2^{5}$
(e) $|B \times B \times B \times B|=|B| \times|B| \times|B| \times|B|=2^{4}$

5 (a) $(D-\{0\}) \times L \times L \times D \times D$
(b) $9 \times 26 \times 26 \times 10 \times 10=608400$

