MAT 200

SOLUTIONS TO HOMEWORK 8

Geometry notes: Exercises 8.4, 8.6

8.4 Existence: let m be a line passing through A and perpendicular to $\overleftrightarrow{O A}$ (such a line exists by Protractor axiom). By Proposition $8.8, m$ is a tangent line to the circle.

Uniqueness: assume that m_{1}, m_{2} are two tangent lines passing through A. Then, by Proposition 8.9 , both m_{1}, m_{2} are perependicular to $\overleftrightarrow{O A}$. But by protractor axiom, this implies that $m_{1}=m_{2}$.
8.6 By Proposition $8.9, \stackrel{\rightharpoonup}{O A} \perp k$ and $\overleftrightarrow{O B} \perp m$. But since $k \| m$, by Proposition 6.3 , we also have $\overleftrightarrow{O B} \perp k$. Thus, $\overleftrightarrow{O A}, \overleftrightarrow{O B}$ are two perpendiculars from O to k. Since the perpenidicular is unique (Theorem 6.4), this implies $\overleftrightarrow{O A}=\overleftrightarrow{O B}$, so points O, A, B lie on a single line. Thus, $\overleftrightarrow{A B}$ passes through O

Section 5.1: 2 a-c, 5

2 a-c (a) $\left\{n^{2} \mid(n \in \mathbb{N}) \wedge(n \leq 100)\right\}$
(b) $\left\{n^{2} \mid n \in \mathbb{N}\right\}$
(c) $\left\{(-2)^{n} \mid n \in \mathbb{N}\right\}$

5 Let x, t be real variables. Then we may write A as $A=\{x+3 \mid x=\tan x\}$.
Let us make change of variables $t=x+3$, so that $x=t-3$. Then we can rewrite $A=\{t \mid t-3=\tan (t-3)\}$.

Answer: c)

