MAT 200 SOLUTIONS TO HOMEWORK 8

NOVEMBER 16, 2004

Geometry notes: Exercises 8.4, 8.6

8.4 Existence: let m be a line passing through A and perpendicular to \overrightarrow{OA} (such a line exists by Protractor axiom). By Proposition 8.8, m is a tangent line to the circle.

Uniqueness: assume that m_1, m_2 are two tangent lines passing through A. Then, by Proposition 8.9, both m_1, m_2 are perependicular to \overrightarrow{OA} . But by protractor axiom, this implies that $m_1 = m_2$.

8.6 By Proposition 8.9, $\overrightarrow{OA} \perp k$ and $\overrightarrow{OB} \perp m$. But since $k \parallel m$, by Proposition 6.3, we also have $\overrightarrow{OB} \perp k$. Thus, $\overrightarrow{OA}, \overrightarrow{OB}$ are two perpendiculars from O to k. Since the perpendicular is unique (Theorem 6.4), this implies $\overrightarrow{OA} = \overrightarrow{OB}$, so points O, A, B lie on a single line. Thus, \overrightarrow{AB} passes through O.

Section 5.1: 2 a-c, 5

- $\begin{array}{ll} \textbf{2 a-c} & (a) \ \{n^2 \mid (n \in \mathbb{N}) \land (n \leq 100)\} \\ & (b) \ \{n^2 \mid n \in \mathbb{N}\} \end{array}$
 - (b) $\{n^{-} \mid n \in \mathbb{N}\}\$ (c) $\{(-2)^{n} \mid n \in \mathbb{N}\}\$
 - (c) $\{(-2) \mid n \in \mathbb{N}\}$
 - **5** Let x, t be real variables. Then we may write A as $A = \{x + 3 | x = \tan x\}$. Let us make change of variables t = x + 3, so that x = t - 3. Then we can rewrite $A = \{t | t - 3 = \tan(t - 3)\}$. Answer : c)