MAT 200

SOLUTIONS TO HOMEWORK 5

OCTOBER 12, 2004

Section 2: 2.1, 2.3, 2.4

In the solutions below, we use $C(l, m)$ for " l, m have common points"; formally it can be written as $\exists P(P \in m \wedge P \in l)$.
2.4. The given definitions are:
$" l, m$ intersect" $\leftrightarrow(l \neq m) \wedge C(l, m)$.
$l \| m \leftrightarrow(l=m) \vee \sim C(l, m)$.
Thus, by De Morgan's law,

$$
\sim(l \| m) \leftrightarrow(l \neq m) \wedge C(l, m)
$$

which is the definition of " l, m intersect". Thus,

$$
(l, m \text { intersect }) \leftrightarrow \sim(l \| m)
$$

by substitution.
2.3 We are given that $C \in \overleftrightarrow{A B}$; also, by definition, $B \in \overleftrightarrow{A B}$. But by Incidence Axiom, there is a unique line containing B, C, and we denoted this line by $\overleftrightarrow{B C}$. Thus, $\overleftrightarrow{A B}=\overleftrightarrow{B C}$. Since $A \in \overleftrightarrow{A C}$ (by definition of $\overleftrightarrow{A C}$), this implies that $A \in \overleftrightarrow{B C}$
2.4 Proof by contradiction. Assume that n does not intersect m. By Exercise 2.1, this means $m \| n$. Using Theorem 2.2, we have $l \| n$. So again by Exercise 2.1, l and n are not intersecting. But we are given that l and n are intersecting. Thus, we have a contradiction. Thus, our assumption was false.

Theorem 3.4, 3.1-3.3

Thm. 3.4 By the Exercise $2.3, \overleftrightarrow{V B}=\overleftrightarrow{V A}$. Since V divides the line into two non-intersecting rays, we either have $\overrightarrow{V B}=\overrightarrow{V A}$ or $\overrightarrow{V B}$ has no common points with $\overrightarrow{V A}$. But the second case cannot be true since $B \in \overrightarrow{V A}$ and $B \in \overrightarrow{V B}$.
3.1 Choose a coordinate system on $\overleftrightarrow{V A}$ such that $f(V)=0, f(A)>0$ (this is possible by Theorem 3.1). Then $P \in \overrightarrow{V A}$ if and only if $f(P)>0$, and condition $|V P|=r$ is equivalent to $|f(P)|=r$. Thus, $P \in \overrightarrow{V A} \wedge|V P|=r \leftrightarrow(f(P)>0) \wedge|f(P)|=r$. BUt the two conditions $f(P)>) \wedge|f(P)|=r$ have a unique solution (namely, $f(P)=r$), so there is a unique point P satisfying $P \in \overrightarrow{V A} \wedge|V P|=r$
3.2 Choose a coordinate system on $\overleftrightarrow{V A}$ such that $f(V)=0, f(A)>0$ (we can do it by Theorem 3.1).

Since $B \in \overrightarrow{V A}, f(B)>0$ (If not, then we would have $f(B)<0=f(V)<f(A)$ which means V is between A and B). Also $|V B|=|f(V)-f(B)|=|f(B)|=f(B)$ and $|V A|=|f(V)-f(A)|=|f(A)|=f(A)$. So from $|V B|<|V A|$ we have $0<f(B)<f(A)$. Hence B lies between V and A.
3.3 Choose a coordinate system on $\overleftrightarrow{A B}$ such that $f(A)=0, f(B)>0$. Then let $b=f(B)$.

To prove existence of M satisfying

$$
\begin{align*}
& |A M|=|M B| \\
& M \text { is between } A, B \tag{1}
\end{align*}
$$

take M to be a point on the line $\overleftrightarrow{A B}$ such that $f(M)=b / 2$. Then $0<b / 2<b$, so M is between A, B, and $|A M|=|b / 2|=b / 2,|M B|=|b-b / 2|=b / 2$. Thus, such a point satisfies (1). This proves existence.

To prove uniqueness of a point M satisfying (1), assume that M_{1}, M_{2} are two such points. Let $x_{1}=f\left(M_{1}\right), x_{2}=f\left(M_{2}\right)$. Then (1) gives

$$
\begin{aligned}
& \left|x_{1}\right|=\left|b-x_{1}\right| \\
& 0<x_{1}<b
\end{aligned}
$$

which implies $x_{1}=b-x_{1}$, so $x_{1}=b / 2$. Similarly (1) for M_{2} gives $x_{2}=b / 2$. So $x_{1}=x_{2}$, and $M_{1}=M_{2}$. This proves uniqueness.
(A short version of the above argument: introduce a coordinate system such that $f(A)=$ $0, f(B)=b>0$; then (1) is equivalent to the system

$$
\begin{aligned}
& x=|b-x| \\
& 0<x<b
\end{aligned}
$$

which has a uniqe solution $x=b / 2$).

