MAT 200 SOLUTIONS TO HOMEWORK 3

SEPTEMBER 28, 2004

Section 3.2: 3, 6, 8 a-f

- (3) (a) $\sim \exists n \ (n > 0 \land n < 1)$
 - (b) $\sim \exists m \ \forall n \ (n \leq m)$
 - (c) $\exists n \ (2n+1=m)$ (for future use, denote it by odd(m))
 - (d) $\sim \exists m \ (m > 1 \land m < n \land (\exists k(mk = n)))$ (for future use, denote this by prime(m))
 - (e) $\forall n \ [(prime(n) \land (n \neq 2)) \rightarrow odd(n)]$
 - (f) $\forall n \; [prime(n) \to \exists m \; (prime(m) \land m > n)]$

(g)
$$\forall x \left(\left(\sim \exists n \ (n = x) \right) \rightarrow \left(\exists n \ (x < n < x + 1) \right) \right)$$

- (h) $\forall x \; \forall y \; \left((x \neq y) \to \exists z \; (x < z < y \lor y < z < x) \right)$
- (6) (a) "For all real $x, x \ge 0$ implies that there exists a real number y for which $y^2 = x$." Better: "Every nonnegative real number has a square root."
 - (b) "For all real x, $x \leq 0$ implies that there does not exists a real number y for which $y = \log[x]$." Better: "If $x \le 0$, $\log x$ does not exist in the set of real numbers."
 - (c) There exists a number x so that, for any y we have $x \cdot y = y$. (This number is generally called 1.)
 - (d) "For all real a and b, if a is non-zero, then there is an x for which ax + b = 0." Better: "Any line which is not horizontal intersects the x-axis."
- (8) (a) Let p: asparagus s: Spinach h: human

L(x, y) : x likes y. Then the answer is

$$\sim \forall h L(h,s) \land \sim \exists h L(h,a)$$

or

$$\sim \forall h L(h,s) \land \forall h \sim L(h,a)$$

(b) Be careful of the fact that the two 'are's have different meaning! Let x: something C(x): x is a crow B(u): u is black.

$$\{\forall x(C(x) \to B(x))\} \land \{\exists x(B(x) \land \sim C(x))\}$$

f: frog K(x, y): x kisses y B(x):x benefits. (c) p: person

$$(\exists p \, K(p, f)) \to (\forall p \, B(p))$$

v: vegetable L(x, y): x likes v. (d) p: person

$$\exists p (\forall v L(p, v))$$

(e) p: person t: time F(x,t): It's possible to fool x at time t.

$$\{\exists t \; (\forall p \; F(p,t))\} \land \{\forall t \; (\exists p \; F(p,t))\} \land \sim \{\forall t \; (\forall x \; F(x,t))\}$$

(f) m: myself p: person (other than me) B(x,y): x bothers y H(x,y): x helps y. $(\forall p B(p,m)) \rightarrow (\forall p \sim H(m,p))$

Section 3.3: Problems 5, 7a-c, 9 a,b,d

- (5) (a) True, all numbers have a square.
 - (b) False, negative numbers have no real square root.
 - (c) False, but $\forall y \exists x(x+5=y)$ would have been true.
 - (d) False. Statement $\forall u \ x + z = y + u$ is false regardless of values of x, y, z.
 - (e) True, $x^2 + y^2$ is necessarily non-negative and hence has a square root.
 - (f) True, choose x = -1.
- (7) (a) Not a law of logic. Having one case of x where P(x) holds does not imply that P(x) holds for all x.
 - (b) Yes, this is a law of logic. This could be argued intuitively, but here is the formal way to argue :

If $\exists x \forall y \ P(x, y)$ is true, we have a value of x, say a, such that P(a, y) is true for all y. Thus, for any y, there is a value of x for which P(x, y) is true — namely, x = a. So $\forall y \exists x \ P(x, y)$ is true.

- (c) Not a law of logic. We can see this from example 3 and 4 in 3.3 of the textbook.
- (9) (a) $\forall x \in A \exists y > 0 \ y^2 = x$
 - (b) $\forall x (\exists n \ n > x) \land (\exists m \ m < x)$ (here x is a real variable and m, n are integer variables).
 - (d) $\sim (\exists x > 0 \ \exists y < 0 \ x = y)$, i.e. "it is not true that there exist a positive number and a negative number which are equal". Can also be written as $\forall x > 0 \ \forall y < 0 \ x \neq y$.