MAT 200

SOLUTIONS TO HOMEWORK 3

Section 3.2: 3, 6, 8 a-f

(3) (a) $\sim \exists n(n>0 \wedge n<1)$
(b) $\sim \exists m \forall n(n \leq m)$
(c) $\exists n(2 n+1=m)$ (for future use, denote it by $\operatorname{odd}(m))$
(d) $\sim \exists m(m>1 \wedge m<n \wedge(\exists k(m k=n)))$ (for future use, denote this by $\operatorname{prime}(m)$
(e) $\forall n[(\operatorname{prime}(n) \wedge(n \neq 2)) \rightarrow \operatorname{odd}(n)]$
(f) $\forall n[\operatorname{prime}(n) \rightarrow \exists m(\operatorname{prime}(m) \wedge m>n)]$
(g) $\forall x((\sim \exists n(n=x)) \rightarrow(\exists n(x<n<x+1)))$
(h) $\forall x \forall y((x \neq y) \rightarrow \exists z(x<z<y \vee y<z<x))$
(6) (a) "For all real $x, x \geq 0$ implies that there exists a real number y for which $y^{2}=x$." Better: "Every nonnegative real number has a square root."
(b) "For all real $x, x \leq 0$ implies that there does not exists a real number y for which $y=\log [x]$." Better: "If $x \leq 0, \log x$ does not exist in the set of real numbers."
(c) There exists a number x so that, for any y we have $x \cdot y=y$. (This number is generally called 1.)
(d) "For all real a and b, if a is non-zero, then there is an x for which $a x+b=0$." Better: "Any line which is not horizontal intersects the x-axis."
(8) (a) Let p : asparagus s : Spinach h : human
$L(x, y): x$ likes y.
Then the answer is

$$
\sim \forall h L(h, s) \wedge \sim \exists h L(h, a)
$$

or

$$
\sim \forall h L(h, s) \wedge \forall h \sim L(h, a)
$$

(b) Be careful of the fact that the two 'are's have different meaning!

Let x : something $C(x): x$ is a crow $\quad B(u): u$ is black.

$$
\{\forall x(C(x) \rightarrow B(x))\} \wedge\{\exists x(B(x) \wedge \sim C(x))\}
$$

(c) p : person $\quad f:$ frog $K(x, y): x$ kisses $y \quad B(x): x$ benefits.

$$
(\exists p K(p, f)) \rightarrow(\forall p B(p))
$$

(d) p : person $\quad v$: vegetable $L(x, y): x$ likes v.

$$
\exists p(\forall v L(p, v))
$$

(e) p : person $\quad t$: time $\quad F(x, t)$: It's possible to fool x at time t.

$$
\{\exists t(\forall p F(p, t))\} \wedge\{\forall t(\exists p F(p, t))\} \wedge \sim\{\forall t(\forall x F(x, t))\}
$$

(f) m : myself $\quad p$: person (other than me) $B(x, y): x$ bothers $y \quad H(x, y): x$ helps y.

$$
(\forall p B(p, m)) \rightarrow(\forall p \sim H(m, p))
$$

Section 3.3: Problems 5, 7a-c, 9 a,b,d

(5) (a) True, all numbers have a square.
(b) False, negative numbers have no real square root.
(c) False, but $\forall y \exists x(x+5=y)$ would have been true.
(d) False. Statement $\forall u x+z=y+u$ is false regardless of values of x, y, z.
(e) True, $x^{2}+y^{2}$ is necessarily non-negative and hence has a square root.
(f) True, choose $x=-1$.
(7) (a) Not a law of logic. Having one case of x where $P(x)$ holds does not imply that $P(x)$ holds for all x.
(b) Yes, this is a law of logic. This could be argued intuitively, but here is the formal way to argue :
If $\exists x \forall y P(x, y)$ is true, we have a value of x, say a, such that $P(a, y)$ is true for all y. Thus, for any y, there is a value of x for which $P(x, y)$ is true - namely, $x=a$. So $\forall y \exists x P(x, y)$ is true.
(c) Not a law of logic. We can see this from example 3 and 4 in 3.3 of the textbook.
(9) (a) $\forall x \in A \exists y>0 y^{2}=x$
(b) $\forall x(\exists n n>x) \wedge(\exists m m<x)$ (here x is a real variable and m, n are integer variables).
(d) $\sim(\exists x>0 \exists y<0 x=y)$, i.e. "it is not true that there exist a positive number and a negative number which are equal". Can also be written as $\forall x>0 \forall y<0 x \neq y$.

