Some problems. Do, or do not. There is no try.

- 1. Prove that SAS is sufficient to prove two triangles are similar. That is, if $\angle CAB \cong \angle FDE$ and |AB|/|DE| = |AC|/|DF|, then $\triangle ABC$ is similar to $\triangle DEF$.
- 2. If *S* is a similarity with ratio *s* and *R* is a similarity with ration *r*, prove that the transformation $S \circ R$ is a similarity with ratio *rs*, and that S^{-1} is a similarity with ratio 1/s.
- 3. Let *A* be a point outside a given circle, and let two secants through *A* intersect the circle at points *B*, *C*, *D*, and *E*, such that *D* lies between *A* and *C*, and *E* lies between *A* and *B*. Proce that $\triangle ABC \sim \triangle ADE$.
- 4. Let \overline{AB} and \overline{CD} be two chords in a circle which intersect at a point *X*. Suppose that |AX| = 2, |XB| = 3, and |CX| = 1. Find the length of |DX|. Justify your answer.