Some problems. Do, or do not. There is no try.

1. Prove that SAS is sufficient to prove two triangles are similar. That is, if $\angle C A B \cong$ $\angle F D E$ and $|A B| /|D E|=|A C| /|D F|$, then $\triangle A B C$ is similar to $\triangle D E F$.
2. If S is a similarity with ratio s and R is a similarity with ration r, prove that the transformation $S \circ R$ is a similarity with ratio $r s$, and that S^{-1} is a similarity with ratio $1 / s$.
3. Let A be a point outside a given circle, and let two secants through A intersect the circle at points B, C, D, and E, such that D lies between A and C, and E lies between A and B. Proce that $\triangle A B C \sim \triangle A D E$.
4. Let $\overline{A B}$ and $\overline{C D}$ be two chords in a circle which intersect at a point X. Suppose that $|A X|=2,|X B|=3$, and $|C X|=1$. Find the length of $|D X|$. Justify your answer.
