Notes from October 7th:

Last time:

We proved this very important lemma:

If $f: M \to N$, where M is m dimensional and N is N dimensional, is smooth. Then if $y \in N$, is a regular value then $f^{-1}(y)$ is a smooth manifold of dimension (m-n).

Example:

Example ,
ED & M
1 Den land Company
Polynomial deg d. Reg
- Do preimage i a point
$C \rightarrow C$

The idea is cuz $Kernal(df_x)$ is a subspace of TM_x

Now:

What if we have a manifold with boundary?

-We denote the boundary of *M* with ∂M

-This choice of notation is reasonable because there is some connection between the derivative and the boundary. This is made most clear in Stoke's theorem.

$$\int_{\partial M} f(x) = \int_M \partial f(x)$$

-This is the same idea as the fundamental theorem of calculus from one dimensional calculus where

$$\int_{a}^{b} f'(x) = f(b) - f(a)$$

-So now let *M* be a manifold without boundary and let $g: M \to \mathbb{R}$. What will $\{x \in M | g(x) \ge 0\}$ be?

-Answer: A manifold with boundary. Now let's show this.

Sketch of Proof with Diagram:

 $g\colon M\to \mathbb{R}$

So g maps from an m dimensional manifold to a 1 dimensional manifold. Also The inverse exists at g(0).

We have established therefore by the lemma from last time that $g^{-1}(0)$ is a smooth (m-1) dimensional sub manifold of M.

So if we limit the domain of inverse to \mathbb{R}^+ , then it is easy to se that the manifold $g^{-1}(0)$ will become the boundary.

-This is a really easy way to generate a manifold with boundary. -Let's state another really vital Lemma:

Let *X* be an m-dimensional manifold with ∂ . Let *Y* be an n-dimensional manifold where m>n. Also let $f: X \to Y$

If $y \in Y$ is a regular value for $f: X \to Y$ and $f|_{\partial X}: \partial X \to Y$ then $f^{-1}(y)$ is a smooth (m-n) submanifold with boundary.

Example:

 $f^{-1}(y \in Y)$ is a 1-dimensioal manifold with boundry.

$$\partial(f^{-1}(y)) = f^{-1}(y) \bigcap \partial X$$

Another example:

f'(y) EI Da I-manifold wi boundag y) = f(y)9 another example = { (K,y,z) (x²+y²+ ?² ≤ 1 220 -RR=I L 2.4 20

 $X = \{(x, y, z) / x^2 + y^2 + z^2 \le 1 \& z \ge 1\}$ $Y = \mathbb{R}$

$$f(x, y, z) = \alpha$$
$$f^{-1}(\alpha) =$$
$$\partial(f^{-1}(\alpha)) =$$
$$= \partial(f^{-1}(\alpha)) \bigcap \partial X$$

f(x, y, 2) 2 (x 2 2

Lemma:

Let *X* be a compact manifold with ∂ .

Then there is no smooth map $f: X \to \partial X$ so that $\forall x \in \partial X, f(x) = x$

Idea: to create such a function, I need to rip a hole in X and that is sort of impossible.