Notes from October 7 ${ }^{\text {th }}$:

Last time:

We proved this very important lemma:
If $f: M \rightarrow N$, where M is m dimensional and N is N dimensional, is smooth. Then if $y \in N$, is a regular value then $f^{-1}(y)$ is a smooth manifold of dimension (m-n).

Example:

The idea is cuz $\operatorname{Kernal}\left(d f_{x}\right)$ is a subspace of $T M_{x}$

Now:

What if we have a manifold with boundary?
-We denote the boundary of M with ∂M
-This choice of notation is reasonable because there is some connection between the derivative and the boundary. This is made most clear in Stoke's theorem.

$$
\int_{\partial M} f(x)=\int_{M} \partial f(x)
$$

-This is the same idea as the fundamental theorem of calculus from one dimensional calculus where

$$
\int_{a}^{b} f^{\prime}(x)=f(b)-f(a)
$$

-So now let M be a manifold without boundary and let $g: M \rightarrow \mathbb{R}$. What will $\{x \in M \mid g(x) \geq 0\}$ be?
-Answer: A manifold with boundary. Now let's show this.

Sketch of Proof with Diagram:

$$
g: M \rightarrow \mathbb{R}
$$

So g maps from an m dimensional manifold to a 1 dimensional manifold. Also The inverse exists at $g(0)$.
We have established therefore by the lemma from last time that $g^{-1}(0)$ is a smooth (m-1) dimensional sub manifold of M.

So if we limit the domain of inverse to \mathbb{R}^{+}, then it is easy to se that the manifold $g^{-1}(0)$ will become the boundary.
-This is a really easy way to generate a manifold with boundary.
-Let's state another really vital Lemma:
Let X be an m -dimensional manifold with ∂. Let Y be an n -dimensional manifold where $\mathrm{m}>\mathrm{n}$. Also let $f: X \rightarrow Y$

If $y \in Y$ is a regular value for $f: X \rightarrow Y$ and $\left.f\right|_{\partial X}: \partial X \rightarrow Y$ then $f^{-1}(y)$ is a smooth (m-n) submanifold with boundary.

$f^{-1}(y \in Y)$ is a 1-dimensioal manifold with boundry.

$$
\partial\left(f^{-1}(y)\right)=f^{-1}(y) \bigcap \partial X
$$

Another example:

$\partial\left(f^{-1}(y)\right)=f^{-1}(y) \cap \partial Z$
another exomple

$$
f(x, y, z)=y
$$

$$
\begin{gathered}
X=\left\{(x, y, z) / x^{2}+y^{2}+z^{2} \leq 1 \& z \geq 1\right\} \\
Y=\mathbb{R}
\end{gathered}
$$

$$
\begin{gathered}
f(x, y, z)=\alpha \\
f^{-1}(\alpha)= \\
\partial\left(f^{-1}(\alpha)\right)= \\
=\partial\left(f^{-1}(\alpha)\right) \bigcap \partial X
\end{gathered}
$$

Lemma:

Let X be a compact manifold with ∂.
Then there is no smooth map $f: X \rightarrow \partial X$ so that $\forall x \in \partial X, f(x)=x$

Idea: to create such a function, I need to rip a hole in X and that is sort of impossible.

