Notes for MAT 364, 10/05/2011

Midterm on October $31^{\text {st }}$.

Lemma: $f: M \rightarrow N$, $\operatorname{dim} M=m$, $\operatorname{dim} N=n, m \geq n$, and f is smooth. If $y \in N$ is a regular point of N, then $f^{-1}(y)$ is a $(m-n)$ dimensional sub-manifold.

Example: Consider the torus $T^{2}=\{(\theta, \phi) \mid 0 \leq \theta, \phi \leq 2 \pi\}$ and S^{1} and the map $f: T^{2} \rightarrow S^{1}$ where $f(\theta, \phi)=\theta$.

Then, $f^{-1}\left(\theta_{0}\right)=\left\{\left(\theta_{0}, \phi\right), 0 \leq \phi \leq 2 \pi\right\}$.

Let $x \in f^{-1}(y)$ (that means $f(x)=y$), and y is regular. The map $d f_{x}: T M_{x} \rightarrow T N_{y}$ is onto. $T M_{x}$ is a dimensional vector space and $T N_{y}$ is a n dimensional vector space.

Then, $\operatorname{ker}\left(d f_{x}\right)$ is a vector space of dimension $(m-n)$.

In our example, our kernel for $d f_{x}$ is 1 dimension.

Note that $M \subseteq \mathbb{R}^{k}(k \geq m)$. Make $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ such that $F\left(x_{1}, \ldots, x_{m}\right)=\left(f\left(x_{1}, \ldots, x_{m}\right), L\left(x_{1}, \ldots, x_{m}\right)\right)$.
Since $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, f\left(x_{1}, \ldots, x_{m}\right)$ has n components and we can pick linear map $L: \mathbb{R}^{m} \rightarrow R^{m-n}$. Then, $\left(f\left(x_{1}, \ldots, x_{m}\right), L\left(x_{1}, \ldots, x_{m}\right)\right)$ has m components. Thus, now we have extended the map $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ to the map $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$.

Now, $d F=\left(d f_{x}, d L\right)$ where $d f_{x}$ has n components and $d L$ has $(m-n)$ components. As a matrix, $d f_{x}$ will have the form:

We can now change $d F$ to Jordan From by changing choosing a different basis, so that

$$
d f_{x}=\left(\begin{array}{ccc|c}
a_{1,1} & \cdots & a_{1, n} & \\
& \ddots & \vdots & 0 \\
0 & & a_{n, n} &
\end{array}\right)
$$

and we can select $d L$ such that under this basis,

$$
d L=\left(\begin{array}{c|ccc}
& b_{1,1} & \cdots & b_{1,(m-n)} \\
0 & & \ddots & \vdots \\
& & & b_{(m-n),(m-n)}
\end{array}\right)
$$

Then, $d F=\left(\begin{array}{ccc|ccc}a_{1,1} & \cdots & a_{1, n} & & & \\ & \ddots & \vdots & & 0 & \\ 0 & & a_{n, n} & & & \\ \hline & & & b_{1,1} & \cdots & b_{1,(m-n)} \\ & 0 & & & \ddots & \vdots \\ & & & & & b_{(m-n),(m-n)}\end{array}\right)$.
Now $\operatorname{ker}(F)=0$. Hence, we can invert F. Also, $d F$ is an isomorphism from $T M_{x}$ to \mathbb{R}^{m} and is non-singular.

Hence, $F^{-1}(y)$ is a function.

$F: f^{-1}(y) \cap U \rightarrow y \times \mathbb{R}^{n-m}$ with F being onto.
The name of the other $(m-n)$ dimensions is normal vectors (or cotangent space).

Easy example:

$$
S^{n-1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}^{2}+\ldots x_{n}^{2}=1\right\}
$$

The easy way to see that S^{n-1} is a smooth manifold is consider:
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f\left(x_{1}, \ldots, x_{n}\right)=x_{1}{ }^{2}+\ldots x_{n}{ }^{2}$.
Then, $f^{-1}(1)=S^{n-1}$.
Any $y \in \mathbb{R}$ where $y \neq 0$ is a regular value. We can apply lemma to show that S^{n-1} is smooth manifold.

Aside: Suppose $T M_{x}$ is \mathbb{R}^{l} and M is a smooth manifold, then $\operatorname{dim} M=l$.
Suppose g_{x} is a chart around x, then $d g_{x}$ is an isomorphism of vector space. Hence, $d g_{x}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, so $n=l$.

