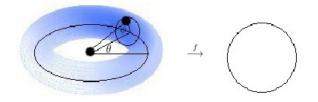
Midterm on October 31st.

Lemma: $f: M \to N$, dim M = m, dim N = n, $m \ge n$, and f is smooth. If $y \in N$ is a regular point of N, then $f^{-1}(y)$ is a (m - n) dimensional sub-manifold.

Example: Consider the torus $T^2 = \{(\theta, \phi) | 0 \le \theta, \phi \le 2\pi\}$ and S^1 and the map $f : T^2 \to S^1$ where $f(\theta, \phi) = \theta$.



Then, $f^{-1}(\theta_0) = \{(\theta_0, \phi), 0 \le \phi \le 2\pi\}.$

Let $x \in f^{-1}(y)$ (that means f(x) = y), and y is regular. The map $df_x : TM_x \to TN_y$ is onto. TM_x is a m dimensional vector space and TN_y is a n dimensional vector space.

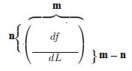
Then, $\ker(df_x)$ is a vector space of dimension (m-n).

In our example, our kernel for df_x is 1 dimension.

Note that $M \subseteq \mathbb{R}^k$ $(k \ge m)$. Make $F : \mathbb{R}^m \to \mathbb{R}^m$ such that $F(x_1, \ldots, x_m) = (f(x_1, \ldots, x_m), L(x_1, \ldots, x_m))$.

Since $f : \mathbb{R}^m \to \mathbb{R}^n$, $f(x_1, \ldots, x_m)$ has *n* components and we can pick linear map $L : \mathbb{R}^m \to \mathbb{R}^{m-n}$. Then, $(f(x_1, \ldots, x_m), L(x_1, \ldots, x_m))$ has *m* components. Thus, now we have extended the map $f : \mathbb{R}^m \to \mathbb{R}^n$ to the map $F : \mathbb{R}^m \to \mathbb{R}^m$.

Now, $dF = (df_x, dL)$ where df_x has n components and dL has (m - n) components. As a matrix, df_x will have the form:



We can now change dF to Jordan From by changing choosing a different basis, so that

$$df_x = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ & \ddots & \vdots \\ 0 & & a_{n,n} \\ \end{pmatrix}$$

and we can select dL such that under this basis,

$$dL = \begin{pmatrix} & & b_{1,1} & \cdots & b_{1,(m-n)} \\ & & \ddots & \vdots \\ & & & b_{(m-n),(m-n)} \end{pmatrix}$$

Then, $dF = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ & \ddots & \vdots \\ 0 & & & 0 \\ \hline & 0 & & a_{n,n} \\ & & & b_{1,1} & \cdots & b_{1,(m-n)} \\ & & & \vdots \\ & & & & b_{(m-n),(m-n)} \end{pmatrix}$.

Now ker(F) = 0. Hence, we can invert F. Also, dF is an isomorphism from TM_x to \mathbb{R}^m and is non-singular.

Hence, $F^{-1}(y)$ is a function.



 $F:f^{-1}(y)\cap U\to y\times \mathbb{R}^{n-m}$ with F being onto.

The name of the other (m - n) dimensions is normal vectors (or cotangent space).

Easy example:

 $S^{n-1} = \{(x_1, \dots, x_n) | x_1^2 + \dots x_n^2 = 1\}$

The easy way to see that S^{n-1} is a smooth manifold is consider:

$$f: \mathbb{R}^n \to \mathbb{R}, f(x_1, \dots, x_n) = x_1^2 + \dots x_n^2$$

Then, $f^{-1}(1) = S^{n-1}$.

Any $y \in \mathbb{R}$ where $y \neq 0$ is a regular value. We can apply lemma to show that S^{n-1} is smooth manifold.

Aside: Suppose TM_x is \mathbb{R}^l and M is a smooth manifold, then dim M = l.

Suppose g_x is a chart around x, then dg_x is an isomorphism of vector space. Hence, $dg_x : \mathbb{R}^n \to \mathbb{R}^n$, so n = l.