## Notes for MAT 364, 9/21/2011

## Chain Rule:

Suppose we have $f: U \rightarrow V, g: V \rightarrow W$, where $U \subset \mathbb{R}^{n}, V \subset \mathbb{R}^{n}$, and $W \subset \mathbb{R}^{k}$. If $f$ and $g$ are smooth at $x$ and $y$ respectively, then $d(g \circ f)_{x}=d g_{y} \circ d f_{x}$.

Here is a diagram on how the sets and functions interact:


## Identity and inclusion maps:

If $I: U \rightarrow U$ is the identity $\operatorname{map}(I(x)=x, \forall x \in U)$ with $U \subset \mathbb{R}^{n}$, then $d I$ is the identity map of $\mathbb{R}^{n}$.
More generally, if $i: U \rightarrow U^{\prime}$ is an inclusion map $(i(x)=x, \forall x \in U)$ with $U \subset U^{\prime} \subset \mathbb{R}^{n}$, then $\left.i\right|_{U}$ is the identity map of $U, i$ is not defined on $U^{\prime}-U$, and $d i_{x}$ is the identity map of $\mathbb{R}^{n}$.


For example: Suppose $U=\left\{(x, y) \mid x^{2}+y^{2}<1\right\}$ (unit disc), and $U^{\prime}=\left\{(x, y) \mid x^{2}+y^{2}<4\right\}$. Consider $i: U \rightarrow U^{\prime}$ such that $i(x, y)=(x, y)$ for all $(x, y) \in U$. Then $d i_{(x, y)}$ is the identity map on $\mathbb{R}^{2}$. The tangent space of $U, T_{(x, y)} U=\mathbb{R}^{2}$ with $d i_{(x, y)}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

## Linear map, diffeomorphism:

If $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map, then $d L_{x}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is $L$. (derivative is a linear approximation of $L$.)
Corollary: Suppose that $U \subset \mathbb{R}^{n}, V \subset \mathbb{R}^{m}$. If $f: U \rightarrow V$ is a diffeomorphism at $x$, then $d f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, $n=m$ and $d f_{x}$ is invertible.

Reminder: Given two manifolds $M, N . f: M \rightarrow N$ is a diffeomorphism if and only if $f$ is bijective and $f$ and $f^{-1}$ are differentiable.

## Proof for Corollary:

Since $f$ is a diffeomorphism, $f^{-1}: V \rightarrow U$ is a differmorphism and $\left(f \circ f^{-1}\right),\left(f^{-1} \circ f\right)$ are identity maps of $V$ and $U$ respectively.

Thus, $d\left(f \circ f^{-1}\right)$ is identity on $\mathbb{R}^{m}$ and $d\left(f^{-1} \circ f\right)$ is identity on $\mathbb{R}^{n}$. Since $d f \circ d f^{-1}$ is identity, both $d f$ and $d f^{-1}$ has full rank (or empty kernel). Hence, $n \geq m \geq n$. Thus, $n=m$.

Converse: The converse is only true locally.
If $f: U \rightarrow V$, and $\exists x \in U$ such that $d f_{x}$ is non-singular and $n=m$, then $f$ is diffeomorphism locally.
For example: $f(x)=\sin (x)$ is not invertible over the whole $\mathbb{R}$ but is invertible between any 2 critical points.

Definition (Critical point): If $d f_{x}$ is singular, then $x$ is a critical point of $f$, otherwise, $x$ is a regular point of $f$.
Aside: Idea of critical point does not need derivative. Consider the function $f(r, \theta)=(r, 2 \theta)$ in polar coordinate which maps a half circle to full circle. $(r, 0)$ is a critical point.

Goal (not finished): Fundamental Theorem of Algebra
If $P: \mathbb{C} \rightarrow \mathbb{C}$ is a polynomial of degree $d, P(z)=0$ has exactly $d$ solutions with multiplicity.
Recall that $\mathbb{C} \leftrightarrow \mathbb{R}^{2}$ by $(a+i b) \rightarrow(a, b)$.
Addition in $\mathbb{C}$ works the same as $\mathbb{R}^{2}$
We want to extend the vector space Structure of $\mathbb{R}^{2}$ by allowing multiplication using $i^{2}=-1$.
Consider $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}=$ Riemann sphere via Stereographic projection.
Recall: Stereographic projection
Consider $\mathbb{C}$ as a plane and $S^{2}$ as a unit sphere. Pick out the north pole $(0,0,1)$ and draw a line connecting a point $z$ on $\mathbb{C}$ and $(0,0,1)$. The projection of $z$ is point $Z$ where it is the interception of $S^{2}$ and the line.

Here is a picture that wikipedia has: (I can't draw 3D)


