Chain Rule:

Suppose we have $f: U \to V$, $g: V \to W$, where $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^n$, and $W \subset \mathbb{R}^k$. If f and g are smooth at x and y respectively, then $d(g \circ f)_x = dg_y \circ df_x$.

Here is a diagram on how the sets and functions interact:

Identity and inclusion maps:

If $I: U \to U$ is the *identity map* $(I(x) = x, \forall x \in U)$ with $U \subset \mathbb{R}^n$, then dI is the *identity map* of \mathbb{R}^n .

More generally, if $i: U \to U'$ is an *inclusion map* $(i(x) = x, \forall x \in U)$ with $U \subset U' \subset \mathbb{R}^n$, then $i|_U$ is the *identity map* of U, i is not defined on U' - U, and di_x is the *identity map* of \mathbb{R}^n .

For example: Suppose $U = \{(x, y) | x^2 + y^2 < 1\}$ (unit disc), and $U' = \{(x, y) | x^2 + y^2 < 4\}$. Consider $i: U \to U'$ such that i(x, y) = (x, y) for all $(x, y) \in U$. Then $di_{(x,y)}$ is the identity map on \mathbb{R}^2 . The tangent space of $U, T_{(x,y)}U = \mathbb{R}^2$ with $di_{(x,y)} : \mathbb{R}^2 \to \mathbb{R}^2$.

Linear map, diffeomorphism:

If $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear map, then $dL_x: \mathbb{R}^n \to \mathbb{R}^m$ is L. (derivative is a linear approximation of L.)

Corollary: Suppose that $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$. If $f: U \to V$ is a diffeomorphism at x, then $df: \mathbb{R}^n \to \mathbb{R}^m$, n = m and df_x is invertible.

Reminder: Given two manifolds $M, N. f : M \to N$ is a diffeomorphism if and only if f is bijective and f and f^{-1} are differentiable.

Proof for Corollary:

Since f is a diffeomorphism, $f^{-1}: V \to U$ is a differmorphism and $(f \circ f^{-1}), (f^{-1} \circ f)$ are identity maps of V and U respectively.

Thus, $d(f \circ f^{-1})$ is identity on \mathbb{R}^m and $d(f^{-1} \circ f)$ is identity on \mathbb{R}^n . Since $df \circ df^{-1}$ is identity, both df and df^{-1} has full rank (or empty kernel). Hence, $n \ge m \ge n$. Thus, n = m.

Converse: The converse is only true locally.

If $f: U \to V$, and $\exists x \in U$ such that df_x is non-singular and n = m, then f is diffeomorphism locally.

For example: $f(x) = \sin(x)$ is not invertible over the whole \mathbb{R} but is invertible between any 2 critical points.

Definition (Critical point): If df_x is singular, then x is a critical point of f, otherwise, x is a regular point of f.

Aside: Idea of critical point does not need derivative. Consider the function $f(r, \theta) = (r, 2\theta)$ in polar coordinate which maps a half circle to full circle. (r, 0) is a critical point.

Goal (not finished): Fundamental Theorem of Algebra

If $P: \mathbb{C} \to \mathbb{C}$ is a polynomial of degree d, P(z) = 0 has exactly d solutions with multiplicity.

Recall that $\mathbb{C} \leftrightarrow \mathbb{R}^2$ by $(a+ib) \to (a,b)$.

Addition in \mathbb{C} works the same as \mathbb{R}^2

We want to extend the vector space Structure of \mathbb{R}^2 by allowing multiplication using $i^2 = -1$.

Consider $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ = Riemann sphere via Stereographic projection.

Recall: Stereographic projection

Consider \mathbb{C} as a plane and S^2 as a unit sphere. Pick out the north pole (0,0,1) and draw a line connecting a point z on \mathbb{C} and (0,0,1). The projection of z is point Z where it is the interception of S^2 and the line.

Here is a picture that wikipedia has: (I can't draw 3D)

