Notes MAT364 September 12th

Recall: $f: A \to B$ is <u>continuous</u> if for every open subset $U \subseteq B$, $f^{-1}(U)$ is open in A.

Proposition:

 $f: X \to Y$ is continuous with $X \subseteq \mathbb{R}^n$ and $Y \subseteq \mathbb{R}^n \Leftrightarrow$ if x is a limit point of $B \subseteq X$, then f(x) is a limit point of $f(B) \subseteq Y$

This just says:

Continuous functions send limit points to limit points.

Goal of Topology:

Decide when two spaces are homeomorphic (the same in terms of topology).

Definition:

Two sets A and B are <u>homeomorphic</u>, if there is a continuous $f: A \rightarrow B$ with a continuous

inverse $f^{-1}: B \to A$.

We can say f is a homeomorphism.

There is no homeomorphism from an open line to a circle that misses the origin because f^{-1} is not continuous.

f: unitsquare $\rightarrow R^3$

 $g: unit circle \rightarrow R^3$

To find a formula for g(x, y) we need to define it in pieces and patch it together.

Bendy(x,y) has to be 0 if $x^2 + y^2 = \frac{7}{8}$ and $\frac{1}{2}$ if $x^2 + y^2 = \frac{3}{4}$

If we define the function g in this piecewise manner, g is a homeomorphism. We cannot do this with a sphere because it is not homeomorphic to the plane. We can use <u>Stereographic Projection</u>:

There is a homeomorphism f from $S^2 - \{north \ pole\}$ to R^2

$$S^2 = \{x^2 + y^2 + z^2 = 1\}$$

NP=(0,0,1)

f(x, y, z) = the point where the line between the north pole and the point (x,y,z) hits R^2

We can see that f(southern disk)=unit disk

f(northern pole) is outside (not in R^2)

The same works for a line and the unit disk:

There is a homeomorphism from $R \cup \{\infty\}$ to the unit disk.

To describe M, we give a collection of parameterizations (charts), each has to be a homeomorphism $f_i: U \subset \mathbb{R}^n \to M$.

Definition: A <u>manifold</u> $M \subseteq R^m$ is a set M and a collection of charts $f_i: U \to M \subseteq R^m$ and

$$U \subseteq \mathbb{R}^n$$
, so that $\bigcup_i f(U) = M$

We need continuity along the edges and the $f_i s$ have to be homeomorphisms.