Notes MAT364 September $12^{\text {th }}$
Recall: $f: A \rightarrow B$ is continuous if for every open subset $U \subseteq B, f^{-1}(U)$ is open in A.

Proposition:
$f: X \rightarrow Y$ is continuous with $X \subseteq R^{n}$ and $Y \subseteq R^{n} \Leftrightarrow$ if x is a limit point of $B \subseteq X$, then $f(x)$ is a limit point of $f(B) \subseteq Y$

This just says:
Continuous functions send limit points to limit points.
Goal of Topology:
Decide when two spaces are homeomorphic (the same in terms of topology).

Definition:

Two sets A and B are homeomorphic, if there is a continuous $f: A \rightarrow B$ with a continuous inverse $f^{-1}: B \rightarrow A$.

We can say f is a homeomorphism.

There is no homeomorphism from an open line to a circle that misses the origin because f^{-1} is not continuous.

$f:$ unitsquare $\rightarrow R^{3}$

$g:$ unitcircle $\rightarrow R^{3}$

To find a formula for $g(x, y)$ we need to define it in pieces and patch it together.

$g(x, y)=\left\{\begin{array}{l}\left(x, y, \sqrt{1-x^{2}+y^{2}}\right) x^{2}+y^{2}<\frac{3}{4} \\ (x, y, \text { bend } y(x, y)) \frac{3}{4} \leq x^{2}+y^{2} \leq \frac{7}{8} \\ (x, y, 0) x^{2}+y^{2}>\frac{7}{8}\end{array}\right.$

Bendy (x, y) has to be 0 if $x^{2}+y^{2}=\frac{7}{8}$ and $\frac{1}{2}$ if $x^{2}+y^{2}=\frac{3}{4}$
If we define the function g in this piecewise manner, g is a homeomorphism.
We cannot do this with a sphere because it is not homeomorphic to the plane.
We can use Stereographic Projection:
There is a homeomorphism f from $S^{2}-\{$ north pole $\}$ to R^{2}
$S^{2}=\left\{x^{2}+y^{2}+z^{2}=1\right\}$
$\mathrm{NP}=(0,0,1)$

$f(x, y, z)=$ the point where the line between the north pole and the point $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ hits R^{2} We can see that f (southern disk)=unit disk f (northern pole) is outside (not in R^{2})

The same works for a line and the unit disk:
There is a homeomorphism from $R \cup\{\infty\}$ to the unit disk.

$S^{3}=\left\{(x, y, z, w) \mid x^{2}+y^{2}+z^{2}+w^{2}=1\right\} \approx R^{3} \cup\{$ point $\}$

To describe M, we give a collection of parameterizations (charts), each has to be a homeomorphism $f_{i}: U \subset R^{n} \rightarrow M$.

Definition: A manifold $M \subseteq R^{m}$ is a set M and a collection of charts $f_{i}: U \rightarrow M \subseteq R^{m}$ and
$U \subseteq R^{n}$, so that $\bigcup_{i} f(U)=M$
We need continuity along the edges and the $f_{i} s$ have to be homeomorphisms.

