Mat360 HW9 Solutions

Huayi Zeng
SUNY,Stony Brook
NY,U.S.A
(hzeng@math.sunysb.edu)

May 1, 2004

EX6.4.5
Proof:
It suffices to show $\angle A B P=\angle C B P$.
Now, let us forget the fifth postulate.
Because $A P=A P, \angle P A B=\angle P A C$, and p_{1}, p_{3} are perpendicular to $A B, A C$.
So,by $A A S$, we have $p_{1}=p_{3}$. Similarly, $p_{2}=p_{3}$.
So $p_{1}=p_{2}=p_{3}$.
Now,wlog, let us assume that $\angle A B P>\angle C B P$.
Because p_{1}, p_{2} are perpendicular to $A B, B C$.
By $A A S$ and $\angle A B P>\angle C B P$, we have $p_{1}>p_{2}$. It is impossible!
And we can also disprove the hypothesis $\angle A B P<\angle C B P$ by same argument.
So $\angle A B P>\angle C B P$, so $B P$ is the bisector of $\angle A B C$.
That's O.K.!

EX6.4.7
Proof:
Step 1:It is easy to show that we can place $\triangle D E F$ inside $\triangle A B C$ with the help of in-center.
Step 2:From Step 1, we can know that the area of $\triangle D E F$ is smaller than $\triangle A B C$.
So the defect of $\triangle D E F$ is smaller than $\triangle A B C$.
So each interior angle of $\triangle D E F$ is smaller than that of $\triangle A B C$.
That's O.K.!

EX6.4.16
Proof:

Of course,the defect of each triangle in Euclidean Geometry is 0 .
But there are a pair of triangles not congruent to each other.
EX6.5.11
(i) $\operatorname{Area}(\triangle)=C \times($ defect $)=c \times\left(180^{\circ}-\right.$ anglesum $)$

Here the sum is $55^{\circ} \times 3=165^{\circ}$.
So defect $=15^{\circ}$.
So Area $=c \times 15^{\circ}$.
(c is a positive constant).
(ii)From (i), it is easy to know that the area is $c \times(180-3 x)$ (with the measure of degree. c is a constant.)

EX6.5.13
(a)Proof:
$\triangle A D E$ is larger.
Because triangle is convex.
So $\triangle A B C$ is lying in $\triangle A B D$ (not inside).
(b) Proof:

Obviously, $S(B C E D)+S(\triangle A B C)=S(\triangle A D E)$,so
$S(B C E D)=S(\triangle A D E)-S(\triangle A B C)=k_{2}^{\circ}-k_{1}^{\circ}$.
Remark:I think it is not elegant to compute the defect!
EX6.6.12
Solution:
In order to calculate the hyperbolic distance between $R=(0.8,0)$ and $S=(0,-0.7)$, we need to find where the hyperbolic line $\overline{R S}$ "ends", that is, the points P and Q where it intersects the unit circle in the Euclidean plane (recall that our model of the hyperbolic plane is the interior of this circle). So, first we must find the line, and then discover where it intersects the unit circle.
The hyperbolic line also contains (in the Euclidean plane) the points $R^{\prime}=(1 / 0.8,0)$ and $S^{\prime}=(0,-1 / 0.7)$ which are the reflections of R and S through the circle. This makes it easy to find the center, which lies on the perpen-
 dicular bisectors of both $\overline{R R^{\prime}}$ and $\overline{S S^{\prime}}$.

Thus, the center is

$$
C=\left(\frac{0.8+1 / 0.8}{2}, \frac{-0.7-1 / 0.7}{2}\right)=\left(\frac{41}{40}, \frac{-149}{140}\right) \approx(1.025,-1.064285714)
$$

and the radius is the distance from any of the points R, R^{\prime}, S, or S^{\prime} to C, which is

$$
r=\frac{\sqrt{92773}}{280} \approx 1.0878093
$$

Now our first task is to locate where this circle (hyperbolic line) intersects the unit circle $x^{2}+y^{2}=1$, so we solve the resulting pair of simultaneous equations for x and y :

$$
x^{2}+y^{2}=1 \quad\left(x-\frac{41}{40}\right)^{2}+\left(y+\frac{149}{140}\right)^{2}=\frac{92773}{78400}
$$

which gives the pair of solutions

$$
P=\left(\frac{80360+298 \sqrt{92773}}{171173}, \frac{-83440+287 \sqrt{92773}}{171173}\right) \approx(0.9997301463,0.0232300403)
$$

and

$$
Q=\left(\frac{80360-298 \sqrt{92773}}{171173}, \frac{-83440-287 \sqrt{92773}}{171173}\right) \approx(-0.0607970201,-0.9981501503)
$$

Now we are ready to use the formula:

$$
\operatorname{dist}(R, S)=\left|\ln \left(\frac{|S P|}{|R P|} \cdot \frac{|R Q|}{|S Q|}\right)\right|
$$

which is approximately

$$
\left|\ln \left(\frac{1.233905206}{0.2010765180} \cdot \frac{1.318057371}{0.3042857042}\right)\right| \approx|\ln (26.58111569)| \approx 3.280201027
$$

EX6.8.12
Proof:
Because, we can divide any triangle into two right triangles.So, $S($ original $\triangle)+180^{\circ}=S($ right $\triangle 1)+S($ right $\triangle 2)>2 \times 180^{\circ}$.
So we can deduce the inequality in this theorem.

